temperature sample
Recently Published Documents


TOTAL DOCUMENTS

75
(FIVE YEARS 10)

H-INDEX

13
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Jon Arizti-Sanz ◽  
A'Doriann Bradley ◽  
Yibin B. Zhang ◽  
Chloe K. Boehm ◽  
Catherine A. Freije ◽  
...  

The COVID-19 pandemic, and the recent rise and widespread transmission of SARS-CoV-2 Variants of Concern (VOCs), have demonstrated the need for ubiquitous nucleic acid testing outside of centralized clinical laboratories. Here, we develop SHINEv2, a Cas13-based nucleic acid diagnostic that combines quick and ambient temperature sample processing and lyophilized reagents to greatly simplify the test procedure and assay distribution. We benchmarked a SHINEv2 assay for SARS-CoV-2 detection against state-of-the-art antigen-capture tests using 96 patient samples, demonstrating 50-fold greater sensitivity and 100% specificity. We designed SHINEv2 assays for discriminating the Alpha, Beta, Gamma and Delta VOCs, which can be read out visually using lateral flow technology. We further demonstrate that our assays can be performed without any equipment in less than 90 minutes. SHINEv2 represents an important advance towards rapid nucleic acid tests that can be performed in any location.


Author(s):  
Yuan-Chih Chang ◽  
Chin-Yu Chen ◽  
Ming-Daw Tsai

Physics ◽  
2021 ◽  
Vol 3 (2) ◽  
pp. 255-274
Author(s):  
Pritam Khan ◽  
K. V. Adarsh

Amorphous chalcogenide glasses are intrinsically metastable, highly photosensitive, and therefore exhibit numerous light-induced effects upon bandgap and sub-bandgap illumination. Depending on the pulse duration of the excitation laser, ChGs exhibit a series of light-induced effects spanning over femtosecond to seconds time domain. For continuous wave (CW) illumination, the effects are dominantly metastable in terms of photodarkening (PD) and photobleaching (PB) that take place via homopolar to heteropolar bond conversion. On the other hand, under nanosecond and ultrafast pulsed illumination, ChGs exhibit transient absorption (TA) that is instigated from the transient bonding rearrangements through self-trapped exciton recombination. In the first part of the review, we pay special attention to continuous wave light-induced PD and PB, while in the second part we will focus on the TA and controlling such effects via internal and external parameters, e.g., chemical composition, temperature, sample history, etc.


Author(s):  
Pritam Khan ◽  
K. V. Adarsh

Amorphous chalcogenide (ChGs) glasses are intrinsically metastable, highly photosensitive, and therefore exhibit numerous lightinduced effects upon bandgap and sub-bandgap illumination. Depending on the pulse duration of the excitation laser, ChGs exhibit a series of lightinduced effects spanning over femtosecond to seconds time domain. For continuous wave illumination, the effects are dominantly metastable in terms of photodarkening (PD) and photobleaching (PB) that takes place via homopolar to heteropolar bond conversion. On the other hand, under nanosecond and ultrafast pulsed illumination, ChGs exhibit transient absorption (TA) that is instigated from the transient bonding rearrangements through self-trapped exciton recombination. In the first part of the review, we pay special attention to continuous wave lightinduced PD and PB, while in the second part we will focus on the TA and controlling such effects via internal and external parameters e.g., chemical composition, temperature, sample history etc.


2021 ◽  
Vol 92 (2) ◽  
pp. 025111
Author(s):  
T. Schmidt ◽  
D. Schlander ◽  
V. Jüchter ◽  
J. Baranyai ◽  
F. Neuberger ◽  
...  

2020 ◽  
Vol 214 ◽  
pp. 113010
Author(s):  
Anna Mandziak ◽  
Juan de la Figuera ◽  
Jose Emilio Prieto ◽  
Jordi Prat ◽  
Michael Foerster ◽  
...  

Molecules ◽  
2020 ◽  
Vol 25 (4) ◽  
pp. 832
Author(s):  
Ryuji Yamashita ◽  
Beata Bober ◽  
Keisuke Kanei ◽  
Suzue Arii ◽  
Kiyomi Tsuji ◽  
...  

β-Cyclocitral, specifically produced by Microcystis, is one of the volatile organic compounds (VOCs) derived from cyanobacteria and has a lytic activity. It is postulated that β-cyclocitral is a key compound for regulating the occurrence of cyanobacteria and related microorganisms in an aquatic environment. β-Cyclocitral is sensitively detected when a high density of the cells is achieved from late summer to autumn. Moreover, it is expected to be involved in changes in the species composition of cyanobacteria in a lake. Although several analysis methods for β-cyclocitral have already been reported, β-cyclocitral could be detected using only solid phase micro-extraction (SPME), whereas it could not be found at all using the solvent extraction method in a previous study. In this study, we investigated why β-cyclocitral was detected using only SPME GC/MS. Particularly, three operations in SPME, i.e., extraction temperature, sample stirring rate, and the effect of salt, were examined for the production of β-cyclocitral. Among these, heating (60 °C) was critical for the β-cyclocitral formation. Furthermore, acidification with a 1-h storage was more effective than heating when comparing the obtained amounts. The present results indicated that β-cyclocitral did not exist as the intact form in cells, because it was formed by heating or acidification of the resulting intermediates during the analysis by SPME. The obtained results would be helpful to understand the formation and role of β-cyclocitral in an aquatic environment.


2019 ◽  
Vol 269 ◽  
pp. 05001 ◽  
Author(s):  
Karan Derekar ◽  
Jonathan Lawrence ◽  
Geoff Melton ◽  
Adrian Addison ◽  
Xiang Zhang ◽  
...  

Wire arc additive manufacturing (WAAM) technique has revealed the potential of replacing existing aerospace industry parts manufactured by traditional manufacturing routes. The reduced mechanical properties compared to wrought products, the porosity formation, and solidification cracking are the prime constraints that are restricting wide-spread applications of WAAM products using aluminium alloys. An interpass temperature is less studied in robotic WAAM and is the vital aspect affecting the properties of a formed product. This paper highlights the effects of change in interpass temperature on porosity content and mechanical properties of WAAM parts prepared using DC pulsed GMAW process, with 5356 aluminium consumable wire. The samples prepared with different interpass temperatures were studied for the distribution of pores with the help of computed tomography radiography (CT radiography) technique. A WAAM sample produced with higher interpass temperature revealed 10.41% less porosity than the sample prepared with lower interpass temperature. The pores with size less than 0.15mm3 were contributing over 95% of the overall porosity content. Additionally, on a volumetric scale, small pores (<0.15mm3) in the higher interpass temperature sample contributed 81.47% of overall volume of pores whereas only 67.92% volume was occupied in lower interpass temperature sample with same sized pores. The different solidification rates believed to have influence on the hydrogen evolution mechanism. Tensile properties of higher interpass temperature sample were comparatively better than lower interpass temperature sample. For the deposition pattern used in this study, horizontal specimens were superior to vertical specimens in tensile properties.


2019 ◽  
Vol 68 (13) ◽  
pp. 132901
Author(s):  
Xia Zhan ◽  
Kelleher Joe ◽  
Jian-Bo Gao ◽  
Yan-Ling Ma ◽  
Ming-Qiang Chu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document