scholarly journals A High-Energy, Narrow-Pulse-Width, Long-Wave Infrared Laser Based on ZGP Crystal

Crystals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 656
Author(s):  
Chuanpeng Qian ◽  
Ting Yu ◽  
Jing Liu ◽  
Yuyao Jiang ◽  
Sijie Wang ◽  
...  

In this paper, we present a high-energy, narrow pulse-width, long-wave infrared laser based on a ZnGeP2 (ZGP) optical parametric oscillator (OPO). The pump source is a 2.1 μm three -stage Ho:YAG master oscillator power-amplifier (MOPA). At a repetition frequency of 1 kHz, the Ho:YAG MOPA system outputs the maximal average power of 52.1 W, which corresponds to the shortest pulse width of 14.40 ns. By using the Ho:YAG MOPA system as the pump source, the maximal average output powers of 3.15 W at 8.2 μm and 11.4 W at 2.8 μm were achieved in a ZGP OPO. The peak wavelength and linewidth (FWHM) of the long-wave infrared laser were 8156 nm and 270 nm, respectively. At the maximal output level, the pulse width and beam quality factor M2 were measured to be 8.10 ns and 6.2, respectively.

2020 ◽  
Vol 8 ◽  
Author(s):  
Yingjie Shen ◽  
Chuanpeng Qian ◽  
Xiaoming Duan ◽  
Ruijun Lan

We demonstrated a high-power long-wave infrared laser based on a polarization beam coupling technique. An average output power at $8.3~\unicode[STIX]{x03BC}\text{m}$ of 7.0 W was achieved at a maximum available pump power of 107.6 W, corresponding to an optical-to-optical conversion of 6.5%. The coupling efficiency of the polarization coupling system was calculated to be approximately 97.2%. With idler single resonance operation, a good beam quality factor of ${\sim}1.8$ combined with an output wavelength of $8.3~\unicode[STIX]{x03BC}\text{m}$ was obtained at the maximum output power.


2016 ◽  
Vol 94 (2) ◽  
Author(s):  
J. P. Palastro ◽  
J. Peñano ◽  
L. A. Johnson ◽  
B. Hafizi ◽  
J. K. Wahlstrand ◽  
...  

2011 ◽  
Vol 48 (11) ◽  
pp. 111403
Author(s):  
李欣荣 Li Xinrong ◽  
孙琦 Sun Qi

2020 ◽  
Vol 8 ◽  
Author(s):  
Ning Ma ◽  
Meng Chen ◽  
Ce Yang ◽  
Shang Lu ◽  
Xie Zhang ◽  
...  

We report high-energy, high-efficiency second harmonic generation in a near-infrared all-solid-state burst-mode picosecond laser at a repetition rate of 1 kHz with four pulses per burst using a type-I noncritical phase-matching lithium triborate crystal. The pulses in each burst have the same time delay ( ${\sim}1~\text{ns}$ ), the same pulse duration ( ${\sim}100~\text{ps}$ ) and different relative amplitudes that can be adjusted separately. A mode-locked beam from a semiconductor saturable absorber mirror is pulse-stretched, split into seed pulses and injected into a Nd:YAG regenerative amplifier. After the beam is reshaped by aspheric lenses, a two-stage master oscillator power amplifier and 4f imaging systems are applied to obtain a high power of ${\sim}100~\text{W}$ . The 532 nm green laser has a maximum conversion efficiency of 68%, an average power of up to 50 W and a beam quality factor $M^{2}$ of 3.5.


Instruments ◽  
2019 ◽  
Vol 3 (3) ◽  
pp. 40 ◽  
Author(s):  
Guido Toci ◽  
Zeudi Mazzotta ◽  
Luca Labate ◽  
François Mathieu ◽  
Matteo Vannini ◽  
...  

The purpose of the European project EuPRAXIA is to realize a novel plasma accelerator user facility. The laser driven approach sets requirements for a very high performance level for the laser system: pulse peak power in the petawatt range, pulse repetition rate of several tens of Hz, very high beam quality and overall stability of the system parameters, along with 24/7 operation availability for experiments. Only a few years ago these performances were considered unrealistic, but recent advances in laser technologies, in particular in the chirped pulse amplification (CPA) of ultrashort pulses and in high energy, high repetition rate pump lasers have changed this scenario. This paper discusses the conceptual design and the overall architecture of a laser system operating as the driver of a plasma acceleration facility for different applications. The laser consists of a multi-stage amplification chain based CPA Ti:Sapphire, using frequency doubled, diode laser pumped Nd or Yb solid state lasers as pump sources. Specific aspects related to the cooling strategy of the main amplifiers, the operation of pulse compressors at high average power, and the beam pointing diagnostics are addressed in detail.


2020 ◽  
Vol 125 (13) ◽  
Author(s):  
D. Woodbury ◽  
A. Goffin ◽  
R. M. Schwartz ◽  
J. Isaacs ◽  
H. M. Milchberg

2012 ◽  
Vol 66 (12) ◽  
pp. 1397-1402 ◽  
Author(s):  
Clayton S.-C. Yang ◽  
Ei E. Brown ◽  
Uwe Hommerich ◽  
Feng Jin ◽  
Sudhir B. Trivedi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document