scholarly journals Freezing and Thawing of D2O/Sand Mixtures Investigated by Neutron Diffraction

Crystals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 961
Author(s):  
Ladislav Kalvoda ◽  
Martin Dráb ◽  
Monika Kučeráková ◽  
Stanislav Vratislav

Evolution ice diffraction patterns in mixtures of D2O with quartz sand of three different grain coarseness (100–600, 300–800 and 600–1200 μm) were studied under various temperature regimes by means of neutron diffraction method. The studied structural parameters and characteristics involved the phase composition of specimens, Ih D2O ice lattice parameters, and crystallographic texture of the present phases. Variations in the ice crystallographic texture during the repeated freezing and thawing were observed for all tested sample types, showing an intermittent enhancement of ice and quartz texture indices accompanying the start of specimens cooling. Formation of radial internal stresses is demonstrated by the observed split of (002) and (100) diffraction maxima of ice. Estimated mean internal radial stress values are calculated.

2008 ◽  
Vol 137 ◽  
pp. 163-168
Author(s):  
S.G. Sheverev ◽  
G.V. Markova ◽  
V.V. Sumin

Spinodal decomposition of solid solution in the 60 at.% Mn - 40 at.% Cu alloy was observed at the temperatures of decomposition (380 – 420 °C) using the neutron diffraction method in situ. The contribution of residual stresses of third type introduced by further cooling of alloy and, correspondingly, martensitic tranformation is estimated. The relatively small value of stresses of third type introduced by martensitic transformation is revealed. Appearance of magnetic superstructural reflexes typical for antiferromagnetic ordered structure is noted.


2009 ◽  
Vol 1215 ◽  
Author(s):  
Gianguido Baldinozzi ◽  
Lionel Desgranges ◽  
Gurvan Rousseau

AbstractThe oxidation of uranium dioxide has been studied for more than 50 years. It was first studied for fuel fabrication purposes and then later on for safety reasons to design a dry storage facility for spent nuclear fuel that could last several hundred years. Therefore, understanding the changes occurring during the oxidation process is essential, and a sound prediction of the behavior of uranium oxides requires the accurate description of the elementary mechanisms on an atomic scale. Only the models based on elementary mechanisms should provide a reliable extrapolation of laboratory results over timeframes spanning several centuries. The oxidation mechanism of uranium oxides requires understanding the structural parameters of all the phases observed during the process. Uranium dioxide crystal structure undergoes several modifications during the low temperature oxidation that transforms UO2 into U3O8. The symmetries and the structural parameters of UO2, β-U4O9, β-U3O7 and U3O8 were determined by refining neutron diffraction patterns on pure single-phase samples. Neutron diffraction patterns, collected during the in situ oxidation of powder samples at 483 K were also analyzed performing Rietveld refinements. The lattice parameters and relative ratios of the four pure phases were measured during the progression of the isothermal oxidation. The transformation of UO2 into U3O8 involves a complex modification of the oxygen sublattice and the onset of complex superstructures for U4O9 and U3O7, associated with regular stacks of complex defects known as cuboctahedra which consist of 13 oxygen interstitial atoms. The structural modifications during the oxidation process are discussed.


2020 ◽  
Author(s):  
Satoshi Morooka ◽  
Nobuo Nakada ◽  
Yuhki Tsukada ◽  
Wu Gong ◽  
Takuro Kawasaki ◽  
...  

2005 ◽  
Vol 105 ◽  
pp. 83-88 ◽  
Author(s):  
H. Sitepu ◽  
Heinz Günter Brokmeier

The modelling and/or describing of texture (i.e. preferred crystallographic orientation (PO)) is of critical importance in powder diffraction analysis - for structural study and phase composition. In the present study, the GSAS Rietveld refinement with generalized spherical harmonic (GSH) was used for describing isostatically-pressed molybdite powders neutron powder diffraction data collected in the ILL D1A instrument. The results showed that for texture in a single ND data of molybdite the reasonable crystal structure parameters may be obtained when applying corrections to intensities using the GSH description. Furthermore, the WIMV method was used to extract the texture description directly from a simultaneous refinement with 1368 whole neutron diffraction patterns taken from the sample held in a variety of orientations in the ILL D1B texture goniometer. The results provided a quantitative description of the texture refined simultaneously with the crystal structure. Finally, the (002) molybdite pole-figures were measured using the GKSS TEX2 texture goniometer. The results showed that neutron diffraction is an excellent tool to investigate the texture in molybdite.


2006 ◽  
Vol 524-525 ◽  
pp. 697-702 ◽  
Author(s):  
Shinobu Okido ◽  
Hiroshi Suzuki ◽  
K. Saito

Residual stress generated in Type-316 austenitic stainless steel butt-weld jointed by Inconel-182 was measured using a neutron diffraction method and compared with values calculated using FEM analysis. The measured values of Type-316 austenitic stainless steel as base material agreed well with the calculated ones. The diffraction had high intensity and a sharp profile in the base metal. However, it was difficult to measure the residual stress at the weld metal due to very weak diffraction intensities. This phenomenon was caused by the texture in the weld material generated during the weld procedure. As a result, this texture induced an inaccurate evaluation of the residual stress. Procedures for residual stress evaluation to solve this textured material problem are discussed in this paper. As a method for stress evaluation, the measured strains obtained from a different diffraction plane with strong intensity were modified with the ratio of the individual elastic constant. The values of residual stress obtained using this method were almost the same as those of the standard method using Hooke’s law. Also, these residual stress values agreed roughly with those from the FEM analysis. This evaluation method is effective for measured samples with a strong texture like Ni-based weld metal.


1994 ◽  
Vol 376 ◽  
Author(s):  
V.L. Aksenov ◽  
A.M. Balagurov ◽  
G.D Bokuchava ◽  
J. Schreiber ◽  
Yu.V. Taran Frank

ABSTRACTVariation of internal stress states in cold rolled sheet metal can essentially influence the result of forming processes. Therefore it is important to control the forming process by a practicable in line testing method. For this purpose magnetic and ultrasonic nondestructive methods are available. However, it is necessary to calibrate these techniques. This paper describes a first step of such a calibration procedure making use of the neutron diffraction method. On the basis of the diffraction results an assessment of the magnetic and ultrasonic methods for the estimation of residual stress in the cold rolled iron-disks was made. Reasonable measuring concepts for practical applications to forming processes with cold rolled sheet metal are discussed.


1991 ◽  
Vol 46 (11) ◽  
pp. 951-954
Author(s):  
W.-M. Kuschke ◽  
P. Lamparter ◽  
S. Steeb

AbstractUsing neutron diffraction as well as the method of isotopic substitution the partial Bhatia-Thornton as well as the partial Faber-Ziman structure factors of amorphous Ni25Zr75 were determined. A compound forming tendency was found. The atomic distances, partial coordination numbers, and the chemical short range order parameter are evaluated.


2020 ◽  
Author(s):  
Arseniy A. Otlyotov ◽  
Georgiy V. Girichev ◽  
Anatolii N. Rykov ◽  
Timo Glodde ◽  
Yury Vishnevskiy

<div><div>Accuracy and precision of molecular parameters determined by modern gas electron diffraction method</div><div>have been investigated. Diffraction patterns of gaseous pyrazinamide have been measured independently in three laboratories, in Bielefeld (Germany), Ivanovo (Russia) and Moscow (Russia). All data sets have been analysed in equal manner using highly controlled background elimination procedure and flexible restraints in molecular structure refinement. In detailed examination and comparison of the obtained results we have determined the average experimental precision of 0.004 Å for bond lengths and 0.2 degrees for angles. The corresponding average deviations of the refined parameters from the ae-CCSD(T)/ccpwCVTZ theoretical values were 0.003 Å and 0.2 degrees. The average precision for refined amplitudes of interatomic vibrations was determined to be 0.005 Å. It is recommended to take into account these values in calculations of total errors for refined parameters of other molecules with comparable complexity.</div></div><div><br></div>


2014 ◽  
Vol 70 (a1) ◽  
pp. C1703-C1703
Author(s):  
Shin Ae Kim ◽  
Chang-Hee Lee

The crystal structure of Li(ND4)SO4 was analysed by neutron diffraction method. The crystal is a partially deuterated Li(NH4)SO4 and one of the ferroelectric materials with hydrogen atoms. The crystal is orthorhombic at room temperature with lattice parameters of a=5.2773(5) Å, b=9.124(2) Å, c=8.772(1) Å and Z=4. Neutron intensity data were collected on the Four-Circle Diffractometer (FCD) at HANARO in Korea Atomic Energy Research Institute. The structure was refined by full-matrix least-square to final R value of 0.049 for 745 observed reflections by neutron diffraction. All atomic positions of four hydrogen atoms at NH4 and the occupation factors of D and H were refined. From these results we obtained the average chemical structure of this sample, LiND3.05H0.95SO4. Five years later, neutron intensity data were collected and analysed once more with same crystal. The crystal is orthorhombic but with different lattice parameters, or hexagonal. We will report and discuss these results in this presentation.


Sign in / Sign up

Export Citation Format

Share Document