scholarly journals In Situ Evolution of Pores in Lithium Hydride at Elevated Temperatures Characterized by X-ray Computed Tomography

Crystals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1093
Author(s):  
Yifan Shi ◽  
Lei Peng ◽  
Wangzi Zhang ◽  
Qiang Li ◽  
Qishou Li ◽  
...  

The evolution of defects such as pores at elevated temperatures is crucial for revealing the thermal stability of lithium hydride ceramic. The in situ evolution of pores in sintered lithium hydride ceramic from 25 °C to 500 °C, such as the statistics of pores and the 3D structure of pores, was investigated by X-ray computed tomography. Based on the statistics of pores, the porosity significantly increased from 25 °C to 200 °C and decreased after 200 °C, due to the significant change in the number and total volume of the round-shaped pores and the branched crack-like pores with an increasing temperature. According to the 3D structure of pores, the positions of pores did not change, and the sizes of pores went up in the range of 25–200 °C and went down after 200 °C. Some small round-shaped pores with an Equivalent Diameter of less than 9 μm appeared at 200 °C and disappeared at elevated temperatures. Some adjacent pores of all types connected at 200 °C, and some branched crack-like pores gradually disconnected with an increasing temperature. The expansion of pores at 200 °C caused by the release of residual hydrogen and the contraction of pores after 200 °C because of the migration and diffusion of some hydrogen in pores might be the reason for the evolution of pores with an increasing temperature.

2019 ◽  
Vol 236 ◽  
pp. 128-130 ◽  
Author(s):  
Peter Wagner ◽  
Oliver Schwarzhaupt ◽  
Michael May

2018 ◽  
Vol 127 (2) ◽  
pp. 371-389 ◽  
Author(s):  
Tyler Oesch ◽  
Frank Weise ◽  
Dietmar Meinel ◽  
Christian Gollwitzer

Author(s):  
Kyuya Nakagawa ◽  
Shinri Tamiya ◽  
Shu Sakamoto ◽  
Gabsoo Do ◽  
Shinji Kono ◽  
...  

X-ray computed tomography technique was used to observe microstructure formation during freeze-drying. A specially designed vacuum freeze-drying stage was equipped at the X-ray CT stage, and the frozen and dried microstructures of dextrin solutions were successfully observed. It was confirmed that the many parts of the pore microstructures formed as a replica of the original ice microstructures, whereas some parts formed as a consequence of the dehydration dependent on the relaxation level of the glassy phases, suggesting that the post-freezing annealing is advantageous for avoiding quality loss that relates to the structural deformation of glassy matters. Keywords: freeze-drying; X-ray CT; ice microstructure; glassy state


2019 ◽  
Vol 181 ◽  
pp. 377-384 ◽  
Author(s):  
Brendan P. Croom ◽  
Helena Jin ◽  
Philip J. Noell ◽  
Brad L. Boyce ◽  
Xiaodong Li

2020 ◽  
Vol 31 ◽  
pp. 164-171
Author(s):  
Ruoyu Xu ◽  
Jingwei Xiang ◽  
Junrun Feng ◽  
Xuekun Lu ◽  
Zhangxiang Hao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document