scholarly journals Lack of Behavioral and Chemical Interference Competition for Refuges among Native Treefrogs and Invasive Cuban Treefrogs (Osteopilus septentrionalis)

Diversity ◽  
2018 ◽  
Vol 10 (3) ◽  
pp. 78
Author(s):  
Kristine Hoffmann ◽  
Monica McGarrity ◽  
Steve Johnson

The introduction of a novel competitor can dramatically alter community dynamics, and competition-mediated impacts often result from biological invasions. Interference competition can be especially problematic as a source of methodological bias for studies seeking to evaluate population and community-level impacts of invasive species. We used polyvinyl chloride (PVC) refugia to conduct laboratory trials to determine whether behavioral or chemical cues of invasive Cuban treefrogs (Osteopilusseptentrionalis) interfere with artificial refuge use by conspecifics or treefrogs native to Florida (USA). We found no evidence of behavioral or chemical competition for refuges by Cuban treefrogs or native treefrogs. The inability of native treefrogs to avoid chemical cues from Cuban treefrogs, despite living sympatrically with the invasive treefrogs for 10–20 years, has important implications for predation risk.


2004 ◽  
Vol 82 (6) ◽  
pp. 897-901 ◽  
Author(s):  
Luisa Amo ◽  
Pilar López ◽  
José Martín

Prey often respond to predator presence by increasing refuge use. However, some types of refuges may expose prey to other types of predators. In addition, in selecting refuges ectothermic animals may have a conflict between safety and thermal suitability. In this paper we examined in the laboratory whether common wall lizards, Podarcis muralis (Laurenti, 1768), (i) prefer to use warm refuges to cold ones, (ii) prefer safe refuges to those with chemical cues of a saurophagous snake, and (iii) whether lizards face a trade-off between using a warm but snake-scented refuge or a cold but odorless one. Results did not show differences in refuge use in relation to refuge temperature, because common wall lizards only entered to investigate it, but they were not forced to hide. So, common wall lizards did not have to be at suboptimal temperatures for longer times. Common wall lizards avoided the use of predator-scented refuges, regardless of thermal conditions, and they also increased their movement rate, trying to escape from the terrarium. Because snakes are inconspicuous inside refuges, an avoidance response to their chemicals may enhance the survival possibilities of common wall lizards. We conclude that in common wall lizards, predation-risk costs are more important than thermal costs in determining refuge use.



Parasitology ◽  
2020 ◽  
pp. 1-7
Author(s):  
Sajad Farahani ◽  
Per J. Palsbøll ◽  
Ido Pen ◽  
Jan Komdeur

Abstract The acanthocephalan parasite, Polymorphus minutus, manipulates its intermediate hosts' (gammarids) behaviour, presumably to facilitate its transmission to the definitive hosts. A fundamental question is whether this capability has evolved to target gammarids in general, or specifically sympatric gammarids. We assessed the responses to chemical cues from a non-host predator (the three-spined sticklebacks Gasterosteus aculeatus) in infected and non-infected gammarids; two native (Gammarus pulex and Gammarus fossarum), and one invasive (Echinogammarus berilloni) species, all sampled in the Paderborn Plateau (Germany). The level of predator avoidance was assessed by subjecting gammarids to choice experiments with the presence or absence of predator chemical cues. We did not detect any behavioural differences between uninfected and infected G. pulex and E. berilloni, but an elevated degree of predator avoidance in infected G. fossarum. Avoiding non-host predators may ultimately increase the probability of P. minutus' of predation by the definitive host. Our results suggested that P. minutus' ability to alter the host's behaviour may have evolved to specifically target sympatric gammarid host species. Uninfected gammarids did not appear to avoid the non-host predator chemical cues. Overall the results also opened the possibility that parasites may play a critical role in the success or failure of invasive species.



2021 ◽  
Author(s):  
◽  
Evan Brenton-Rule

<p>Biological invasions are one of the major causes of biodiversity decline on the planet. The key driver of the global movement of invasive species is international trade. As a response to trade driven invasive species risk, international and domestic regulations have been promulgated with the goal of managing the spread and impact of non-native species. My aims in this thesis were twofold. First, my goal was to review a subset of international and domestic regulations with a view to commenting on their fitness for purpose and suggesting potential improvements. Second, I used the example of non-native and invasive Hymenoptera, as well as their pathogens, to illustrate the risks posed by invasive species and gaps in their management.   In order to assess international and domestic regulations, I reviewed the World Trade Organization’s (WTO) Agreement on Sanitary and Phytosanitary Measures, as well as associated disputes. I argue that the WTO’s regulatory system does, for the most part, allow domestic regulators to manage invasive species risk as they see fit. Subsequently, the focus of the thesis narrows to investigate New Zealand’s pre- and post-border regime managing invasive species. I argue that New Zealand’s pre-border approach represents international best practice, but the post-border management of species is fragmented. The power to manage invasive species has been delegated to sub-national and regional bodies, which typically approach invasive species management in different ways. This variation has led to regulatory inconsistencies in pests managed and funding allocated. There appears to be a substantial lack of planning in some spaces, such as the risk of aquatic invasions. I make recommendations to ameliorate these inconsistencies.   My second aim involved the study of non-native and invasive Hymenoptera in New Zealand, as well as the pathogens they carry, in order to illustrate the risks posed by invasive species and gaps in their management. I show that the globally widespread invasive Argentine ant (Linepithema humile) may play a role in the pathogen dynamics and mortality of honey bee hives where the species occur sympatrically. Hives in the presence of Argentine ants suffered significantly higher mortality rates relative to hives without ants and always had higher levels of a honey bee pathogen Deformed wing virus. I demonstrate that honey bee pathogens are found in a range of invasive Hymenoptera in New Zealand. I amplify entire genomes of the honey bee virus Kashmir bee virus (KBV) from three species of non-native or invasive Hymenoptera (Argentine ants, common wasps and honey bees). I show that there is KBV strain variability within and between regions, but more between regions. Further, I demonstrate the result that as sampled KBV sequence length increases, so too does sampled diversity. These results highlight how ‘an’ invasive species is typically not alone: they carry a range of diseases that are almost always not considered in international and regional management plans.   Patterns of non-native Hymenoptera carrying honey bee diseases were not restricted to New Zealand. I used mitochondrial DNA to find the likely origin of invasive populations of the globally distributed invasive German wasp. I demonstrate that German wasps show reduced genetic diversity in the invaded range compared to the native range. Populations in the introduced range are likely to have arrived from different source populations. In some regions there were likely multiple introductions. Other regions are genetically homogenous and represent potential areas for use of gene drive technologies. All four different honey bee pathogens assayed for were found in German wasp populations worldwide. These results highlight how the introduction of one exotic species likely brings a range of pathogens. This example of pathogens in Hymenoptera is likely to be true for nearly all non-native introductions.  Many of the impacts of biological invasions, such as predation and competition, are relatively obvious and are frequently studied. However some, such as the impact of pathogens, are unseen and poorly understood. Legal regulation is often a post-hoc response implemented once a problem has already arisen. At a global level regulatory regimes operate relatively effectively. As the focus becomes more granular, such as the case of pathogens of Hymenoptera, fewer controls exists. This thesis helps to reduce uncertainty in this area as well as makes recommendations as to how these risks may be managed.</p>



Oecologia ◽  
1981 ◽  
Vol 51 (2) ◽  
pp. 265-270 ◽  
Author(s):  
Eldridge S. Adams ◽  
James F. A. Traniello


2021 ◽  
pp. 1-11
Author(s):  
Catherine Chuirazzi ◽  
Melissa Ocampo ◽  
Mizuki K. Takahashi

Abstract Diet quality and predation are two critical factors in determining the growth and development of organisms. Various anurans are susceptible to phenotypic changes influenced by these factors. Yet, few studies examined prey diet quality as potential influence over predator-induced traits. Using wood frog tadpoles (Lithobates sylvaticus) as a model species, we investigated the effects of three diet compositions (plant-based, animal-based, omnivorous) crossed with presence or absence of chemical cues from predatory dragonfly larvae (Aeshnidae). After 35 days, we recorded 11 morphological measurements, Gosner stage, and intestinal length of tadpoles to assess phenotypic changes under the six different experimental conditions. Our results showed the additive effects of both diet quality and predator chemical cue without detection of interactions between the two. Tadpoles receiving the omnivorous diet grew and developed faster with wider denticle rows than those receiving the plant or animal diets. The growth and development of tadpoles receiving only the animal diet were significantly hindered. These results emphasize the importance of diet quality in the growth and development of larval wood frogs. Chemical cues from predators significantly reduced tadpole body size but, in contrast to previous findings, did not affect tail size. Our experimental procedure of providing water containing predator and injured conspecific chemical cues on a weekly basis likely provided relatively weak predation risk perceived by tadpoles compared to previous studies using caged predators. The predator environment in our experiment, however, represents one ecologically relevant scenario in which predation risk is not urgent.







2017 ◽  
Vol 284 (1851) ◽  
pp. 20162590 ◽  
Author(s):  
Geoffrey C. Trussell ◽  
Catherine M. Matassa ◽  
Patrick J. Ewanchuk

In simple, linear food chains, top predators can have positive indirect effects on basal resources by causing changes in the traits (e.g. behaviour, feeding rates) of intermediate consumers. Although less is known about trait-mediated indirect interactions (TMIIs) in more complex food webs, it has been suggested that such complexity dampens trophic cascades. We examined TMIIs between a predatory crab ( Carcinus maenas ) and two ecologically important basal resources, fucoid algae ( Ascophyllum nodosum ) and barnacles ( Semibalanus balanoides ), which are consumed by herbivorous ( Littorina littorea ) and carnivorous ( Nucella lapillus ) snails, respectively. Because crab predation risk suppresses snail feeding rates, we hypothesized that crabs would also shape direct and indirect interactions among the multiple consumers and resources. We found that the magnitude of TMIIs between the crab and each resource depended on the suite of intermediate consumers present in the food web. Carnivorous snails ( Nucella ) transmitted TMIIs between crabs and barnacles. However, crab–algae TMIIs were transmitted by both herbivorous ( Littorina ) and carnivorous ( Nucella ) snails, and these TMIIs were additive. By causing Nucella to consume fewer barnacles, crab predation risk allowed fucoids that had settled on or between barnacles to remain in the community. Hence, positive interactions between barnacles and algae caused crab–algae TMIIs to be strongest when both consumers were present. Studies of TMIIs in more realistic, reticulate food webs will be necessary for a more complete understanding of how predation risk shapes community dynamics.



Sign in / Sign up

Export Citation Format

Share Document