scholarly journals Bryophyte Diversity along an Elevational Gradient on Pico Island (Azores, Portugal)

Diversity ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 162
Author(s):  
Márcia C. M. Coelho ◽  
Rosalina Gabriel ◽  
Helena Hespanhol ◽  
Paulo A. V. Borges ◽  
Claudine Ah-Peng

The study of elevational patterns is a valuable method for inferring the influence of the climate and other variables in the regional distributions of species. Bryophytes are ideal for revealing different environmental patterns in elevational studies, since they occur from sea level to above the tree line. Taking advantage of the long elevational transect of Pico Island and the use of standardized survey methods, our main aims were: (1) to identify and characterize the alpha and beta diversities of bryophytes across the full elevational gradient (12 sites of native vegetation, ranging from 10 to 2200 m above sea level [a.s.l.]); (2) to detect the ecological factors driving bryophyte composition; (3) to identify bryophytes’ substrate specificity; and (4) to check the presence of rare and endemic species. The identification of 878 microplots yielded 141 species (71 liverworts and 70 mosses), almost half of those known to occur on Pico Island. The bryophyte species richness followed a parabolic unimodal pattern with a mid-elevation peak, where the richest native forests occur. A canonical correspondence analysis (CCA) of the bryophyte composition and explanatory variables revealed the effect of the elevation, precipitation, disturbance, richness of vascular plants and bark pH in explaining bryophyte compositions at regional levels. Very few species of bryophytes showed substrate specificity. Pico Island’s elevational gradient could be an asset for studying long-term changes in bryophyte species composition and alpha diversity under global change.

Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1324
Author(s):  
David Revell ◽  
Phil King ◽  
Jeff Giliam ◽  
Juliano Calil ◽  
Sarah Jenkins ◽  
...  

Sea level rise increases community risks from erosion, wave flooding, and tides. Current management typically protects existing development and infrastructure with coastal armoring. These practices ignore long-term impacts to public trust coastal recreation and natural ecosystems. This adaptation framework models physical responses to the public beach and private upland for each adaptation strategy over time, linking physical changes in widths to damages, economic costs, and benefits from beach recreation and nature using low-lying Imperial Beach, California, as a case study. Available coastal hazard models identified community vulnerabilities, and local risk communication engagement prioritized five adaptation approaches—armoring, nourishment, living shorelines, groins, and managed retreat. This framework innovates using replacement cost as a proxy for ecosystem services normally not valued and examines a managed retreat policy approach using a public buyout and rent-back option. Specific methods and economic values used in the analysis need more research and innovation, but the framework provides a scalable methodology to guide coastal adaptation planning everywhere. Case study results suggest that coastal armoring provides the least public benefits over time. Living shoreline approaches show greater public benefits, while managed retreat, implemented sooner, provides the best long-term adaptation strategy to protect community identity and public trust resources.


Author(s):  
Thomas L Rodebaugh ◽  
Madelyn R Frumkin ◽  
Angela M Reiersen ◽  
Eric J Lenze ◽  
Michael S Avidan ◽  
...  

Abstract Background The symptoms of COVID-19 appear to be heterogenous, and the typical course of these symptoms is unknown. Our objectives were to characterize the common trajectories of COVID-19 symptoms and assess how symptom course predicts other symptom changes as well as clinical deterioration. Methods 162 participants with acute COVID-19 responded to surveys up to 31 times for up to 17 days. Several statistical methods were used to characterize the temporal dynamics of these symptoms. Because nine participants showed clinical deterioration, we explored whether these participants showed any differences in symptom profiles. Results Trajectories varied greatly between individuals, with many having persistently severe symptoms or developing new symptoms several days after being diagnosed. A typical trajectory was for a symptom to improve at a decremental rate, with most symptoms still persisting to some degree at the end of the reporting period. The pattern of symptoms over time suggested a fluctuating course for many patients. Participants who showed clinical deterioration were more likely to present with higher reports of severity of cough and diarrhea. Conclusion The course of symptoms during the initial weeks of COVID-19 is highly heterogeneous and is neither predictable nor easily characterized using typical survey methods. This has implications for clinical care and early-treatment clinical trials. Additional research is needed to determine whether the decelerating improvement pattern seen in our data is related to the phenomenon of patients reporting long-term symptoms, and whether higher symptoms of diarrhea in early illness presages deterioration.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
H. Bâki Iz ◽  
C. K. Shum ◽  
C. Zhang ◽  
C. Y. Kuo

AbstractThis study demonstrates that relative sea level trends calculated from long-term tide gauge records can be used to estimate relative vertical crustal velocities in a region with high accuracy. A comparison of the weighted averages of the relative sea level trends estimated at six tide gauge stations in two clusters along the Eastern coast of United States, in Florida and in Maryland, reveals a statistically significant regional vertical crustal motion of Maryland with respect to Florida with a subsidence rate of −1.15±0.15 mm/yr identified predominantly due to the ongoing glacial isostatic adjustment process. The estimate is a consilience value to validate vertical crustal velocities calculated from GPS time series as well as towards constraining predictive GIA models in these regions.


1974 ◽  
Vol 28 (5) ◽  
pp. 524-530 ◽  
Author(s):  
G. W. Lennon

The use of mean sea level as a surface of reference that might provide an independent control for geodetic leveling has been a long term goal arising from the classical analogy between the geoid as an equipotential surface and the surface assumed by a hypothetical undisturbed world ocean. The problems associated with this aim are now known to be vast, and are associated with the dynamics of the marine system, notably its response to meteorological forces, to variations in density and to the effects of basic circulation patterns. In consequence the mean sea level surface varies rapidly in both time and space. This identifies in fact a distinctive scientific discipline, coastal geodesy, in which contributions are required by both geodesists and oceanographers. It has come to be recognized that the coastal zone is a hazardous environment for all observational techniques concerned. On the one hand, the difficulties of measurement of coastal sea levels have only recently been understood; on the other hand, precise leveling procedures are now known to be influenced by the attraction of marine tides and by crustal deformation of tidal loading. Much of the data available for study are therefore inadequate and, moreover, it should be noted that long-time series are required. It is now possible to lay plans for both geodetic and oceanographic procedures to remedy these deficiencies in the long-term interests of the study.


2001 ◽  
Vol 38 (2) ◽  
pp. 293-308 ◽  
Author(s):  
Andreas Prokoph ◽  
Anthony D Fowler ◽  
R Timothy Patterson

Wavelet transform and other signal analysis techniques suggest that the planktic foraminiferal (PF) long-term evolutionary record of the last 127 Ma can be attributed to complex periodic and nonlinear patterns. Correlation of the PF extinction pattern with other geological series favors an origin of the ~30 Ma periodicity and self-organization by quasi-periodic mantle-plume cycles that in turn drive episodic volcanism, CO2-degassing, oceanic anoxic conditions, and sea-level fluctuations. Stationary ~30 Ma periodicity and a weak secular trend of ~100 Ma period are evident in the PF record, even without consideration of the mass extinction at the K–T boundary. The 27–32 Ma periodicity in the impact crater record and lows in the global sea-level curve, respectively, are ~6.5 Ma and ~2.3 Ma out of phase with PF-extinction data, although major PF-extinction events correspond to the bolide impacts at the K–T boundary and in late Eocene. Another six extinction events correspond to abrupt global sea-level falls between the late Albian and early Oligocene. Self-organization in the PF record is characterized by increased radiation rates after major extinction events and a steady number of baseline species. Our computer model of long-term PF evolution replicates this SO pattern. The model consists of output from the logistic map, which is forced at 30 Ma and 100 Ma frequencies. The model has significant correlations with the relative PF-extinction data. In particular, it replicates singularities, such as the K–T event, nonstationary 2.5–10 Ma periodicities, and phase shifts in the ~30 Ma periodicity of the PF record.


Author(s):  
مهند المحمدي ◽  
محمد الحياني

The research aims to measure and analyze the determinants of investment in the Iraqi economy and study the theoretical foundations of investment and analyze the viewpoint of the most important schools of economic thought regarding investment and investment determinants and their effects on economic activity , and by using possible standard models as the results of standard analysis using the joint integration tests of time series . cointegration tests, they have proven the existence of a long-term equilibrium relationship according to the methodology of the results of estimating the short and long-term parameters and the error correction parameter(ECM) , it is moving from a set of explanatory variables towards The dependent variable, while the value of the error correction vector coefficient was negative and significant , as it reached (-0.59%) , which means the fulfillment of the two basic conditions in this parameter , namely : its negative value and the statistical significance . This means that (0.59) of the short-term errors are automatically corrected during the unit of time (year) to reach the equilibrium in the long term, meaning that the investment requires about less then a year (1.6) , that is , approximately a year and 6 days to reach its equilibrium value in the long term , In other words , the previous period deviates from the long-term equilibrium and is corrected in the current by (59%) . This indicates that the adjustment in the model was relatively fast .


Sign in / Sign up

Export Citation Format

Share Document