scholarly journals Calcium Transport along the Axial Canal in Acropora

Diversity ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 407
Author(s):  
Yixin Li ◽  
Xin Liao ◽  
Chunpeng He ◽  
Zuhong Lu

In Acropora, the complex canals in a coral colony connect all polyps to a holistic network, enabling them to collaborate in performing biological processes. There are various types of canals, including calice, axial canals, and other internal canals, with structures that are dynamically altered during different coral growth states due to internal calcium transport. In this study, we investigated the morphological changes in the corallite of six Acropora muricata samples by high resolution micro-computed tomography, observing the patterns of calcium carbonate deposition within axial corallite during processes of new branch formation and truncated tip repair. We visualized the formation of a new branch from a calice and the calcium carbonate deposition in the axial canal. Furthermore, the diameter and volume changes of the axial canal in truncated branches during rebuilding processes were calculated, revealing that the volume ratio of calcareous deposits in the axial canal exhibit significant increases within the first three weeks, returning to levels in the initial state in the following week. This work demonstrates that calcium carbonate can be stored temporarily and then remobilized as needed for rapid growth. The results of this study shed light on the control of calcium carbonate deposition and growth of the axial corallite in Acropora.

Author(s):  
Yixin Li ◽  
Xin Liao ◽  
Chunpeng He ◽  
Zuhong Lu

In Acropora, the complex canals in a coral colony connect all polyps into a holistic network to collaborate in performing biological processes. There are various types of canals, including calice, axial canals, and other internal canals, with structures that are dynamically altered during different coral growth states due to internal calcium transport. However, few studies have considered the regulation of calcium transport in Acropora. In this study, we investigated the morphological changes of the axial canal in six Acropora muricata samples by high resolution micro-computed tomography, observing the patterns of the axial canal during the processes of new branch formation and truncated branch rebuilding. We visualized the formation of a new branch from a calice and deposition of the iconic hexactin skeletons in the axial canal. Furthermore, the diameter and volume changes of the axial canal in truncated branches during rebuilding processes were calculated, revealing that the volume ratio of calcareous deposits in the axial canal exhibit significant increases within the first three weeks, returning to levels in the initial state in the following week. This work indicates that the axial canal can transport calcium to form hexactin skeletons in a new branch and rebuild the tip of a truncated branch. The calcium transport along canal network regulates various growth processes, including budding, branching, skeleton forming, and self-rebuilding of an Acropora colony. Understanding the changes in canal function under normal and extreme conditions will provide theoretical guidance for restoration and protection of coral reefs.


10.3133/pp350 ◽  
1962 ◽  
Author(s):  
Preston E. Cloud ◽  
P.D. Blackmon ◽  
F.D. Sisler ◽  
Henry Kramer ◽  
J.H. Carpenter ◽  
...  

Coatings ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 72
Author(s):  
Vicente Hernandez ◽  
Romina Romero ◽  
Sebastián Arias ◽  
David Contreras

In this study, a novel method for calcium carbonate deposition in wood that increases carbon dioxide concentration and fire resistance is proposed. The method promoted the mineralization of radiata pine wood microstructure with calcium carbonate by using a process consisting in the vacuum impregnation of wood with a calcium chloride aqueous solution and the subsequent sequential diffusion of gaseous ammonium and carbon dioxide. In the most favorable conditions, the method yielded a weight gain of about 20 wt.% due to mineralization, which implied the accumulation of 0.467 mmol·g−1 of carbon dioxide in the microstructure of wood. In addition, a weight gain of about 8% was sufficient to provide fire resistance to a level similar to that achieved by a commercially available fire-retardant treatment. The feasibility of retaining carbon dioxide directly inside the wood microstructure can be advantageous for developing wood products with enhanced environmental characteristics. This method can be a potential alternative for users seeking materials that could be effective at supporting a full sustainable development.


1970 ◽  
Vol 83 (984) ◽  
pp. 193-201 ◽  
Author(s):  
Megumi OKAZAKI ◽  
Tomoyoshi IKAWA ◽  
Kurazo FURUYA ◽  
Kazutosi NISIZAWA ◽  
Tomoo MIWA

CrystEngComm ◽  
2020 ◽  
Vol 22 (15) ◽  
pp. 2585-2592
Author(s):  
Yuexian Hong ◽  
Dmitry S. Yufit ◽  
Nathalie Letzelter ◽  
Jonathan W. Steed

Calcium complexes of cyclic oligocarboxylic acids have been studied as models to understand how subtle changes in molecular structure lead to significant variation in inhibition ability for calcium carbonate deposition


Sign in / Sign up

Export Citation Format

Share Document