scholarly journals Mapping of Sewer Lines Using GPR: A Case Study in Tunisia

Data ◽  
2018 ◽  
Vol 3 (4) ◽  
pp. 40 ◽  
Author(s):  
Rim Ghozzi ◽  
Samer Lahouar ◽  
Kamel Besbes ◽  
Chokri Souani

Many infrastructure enhancement projects require underground utility mapping before starting any excavation processes, especially in urban areas. In fact, mapping of an area provides a general overview of the infrastructure above and underground. This mapping can be done by Ground Penetrating Radar (GPR), which is commonly used as a Non-Destructive Testing (NDT) technique that allows, among others, the detection and localization of buried utilities without any damage to the surface. This paper presents the results of mapping sewer lines in an urban region of the city of Tunis, Tunisia, using GPR. In this study a ground-coupled GPR system with a frequency of 400MHz was used to detect and locate the sewer lines in the study area. In order to reduce the amount of collected data over the large study area, some subareas were selected where GPR testing was conducted and data were analyzed. Then, sewer lines were interpolated over the whole area using the GPR results and the locations of manholes visible from the surface. It was shown that using this technique mapping of the pipes in the entire area can be achieved. All data presented in this study were collected by the Office of Topography and Cadastre (OTC) in Tunisia.

Metals ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 612 ◽  
Author(s):  
Jue Hu ◽  
Weiping Xu ◽  
Bin Gao ◽  
Gui Tian ◽  
Yizhe Wang ◽  
...  

Eddy Current Pulsed Thermography is a crucial non-destructive testing technology which has a rapidly increasing range of applications for crack detection on metals. Although the unsupervised learning method has been widely adopted in thermal sequences processing, the research on supervised learning in crack detection remains unexplored. In this paper, we propose an end-to-end pattern, deep region learning structure to achieve precise crack detection and localization. The proposed structure integrates both time and spatial pattern mining for crack information with a deep region convolution neural network. Experiments on both artificial and natural cracks have shown attractive performance and verified the efficacy of the proposed structure.


2021 ◽  
Vol 13 (18) ◽  
pp. 3696
Author(s):  
Yuri Álvarez López ◽  
María García-Fernández

Ground Penetrating Radar (GPR) has become one of the key technologies in subsurface sensing and, in general, in Non-Destructive Testing (NDT), since it is able to detect both metallic and nonmetallic targets [...]


2019 ◽  
Vol 11 (23) ◽  
pp. 2814 ◽  
Author(s):  
Sossa ◽  
Pérez-Gracia ◽  
González-Drigo ◽  
Rasol

Corrosion is a significant damage in many reinforced concrete structures, mainly in coastal areas. The oxidation of embedded iron or steel elements degrades rebar, producing a porous layer not adhered to the metallic surface. This process could completely destroy rebar. In addition, the concrete around the metallic targets is also damaged, and a dense grid of fissures appears around the oxidized elements. The evaluation of corrosion is difficult in early stages, because damage is usually hidden. Non-destructive testing measurements, based on non-destructive testing (NDT) electric and magnetic surveys, could detect damage as consequence of corrosion. The work presented in this paper is based in several laboratory tests, which are centered in defining the effect of different corrosion stage on ground penetrating radar (GPR) signals. The analysis focuses on the evaluation of the reflected wave amplitude and its behavior. The results indicated that an accurate analysis of amplitude decay and intensity could most likely reveal an approach to the state of degradation of the embedded metallic targets because GPR images exhibit characteristics that depend on the effects of the oxidized rebar and the damaged concrete. These characteristics could be detected and measured in some cases. One important feature is referred to as the reflected wave amplitude. In the case of corroded targets, this amplitude is lower than in the case of reflection on non-oxidized surfaces. Additionally, in some cases, a blurred image appears related to high corrosion. The results of the tests highlight the higher amplitude decay of the cases of specimens with corroded elements.


Author(s):  
J. Yang ◽  
M. Fu

Due to the use of wood and other non-permanent materials, traditional Chinese architecture is one of the most fragile constructions in various heritage objects today. With the increasing emphasis on the protection of cultural relics, the repair project of wooden structure has become more and more important. There are various kinds of destructions, which pose a hidden danger to the overall safety of the ancient buildings, caused not only by time and nature, but also by improper repairs in history or nowadays. Today, the use of digital technology is a basic requirement in the conservation of cultural heritage. Detection technology, especially non-destructive testing technology, could provide more accurate records in capturing detailed physical characteristics of structures such as geometric deformation and invisible damage, as well as prevent a man-made destruction in the process of repair project. This paper aims to interpret with a typical example, Ancestral Temple in Mukden Palace, along with a discussion of how to use the non-destructive testing technology with ground penetrating radar, stress wave, resistograph and so on, in addition to find an appropriate protection method in repair project of traditional Chinese wooden architecture.


2021 ◽  
Vol 1203 (3) ◽  
pp. 032058
Author(s):  
Monika Zielińska ◽  
Magdalena Rucka

Abstract Examining the condition of wooden elements is crucial from the perspective of proper structure performance. If the deterioration in the internal wood condition, which displays no symptoms visible from the outside, is detected, the further spread of the deterioration can be prevented. Test results often point to the necessity of conducting repairs and, renovations, replacing the structure of wooden beams, or even substituting a significant part of the structure. To achieve acceptable results, test methods should take into account the anisotropic nature of wood, which includes the shape of annual rings, as well as the location of the core in crosssection. To adopt methods based on physical effects, profound knowledge of wood physics is needed, particularly of interdependence. Apart from simple tests such as a visual inspection or tapping that are used to determine near-surface defects, non-destructive testing (NDT) plays an important role in the process. This paper presents the methods of non-destructive testing of wooden elements. These methods include tests conducted with ground penetrating radar (GPR), thermal techniques, microwaves, acoustic emission, ultrasonic tomography, and X-ray tomography. The paper summarises the use of non-destructive methods, indicating their advantages, disadvantages as well as some limitations.


Sign in / Sign up

Export Citation Format

Share Document