scholarly journals Cybersecurity Analysis of Load Frequency Control in Power Systems: A Survey

Designs ◽  
2021 ◽  
Vol 5 (3) ◽  
pp. 52
Author(s):  
Sahaj Saxena ◽  
Sajal Bhatia ◽  
Rahul Gupta

Today, power systems have transformed considerably and taken a new shape of geographically distributed systems from the locally centralized systems thereby leading to a new infrastructure in the framework of networked control cyber-physical system (CPS). Among the different important operations to be performed for smooth generation, transmission, and distribution of power, maintaining the scheduled frequency, against any perturbations, is an important one. The load frequency control (LFC) operation actually governs this frequency regulation activity after the primary control. Due to CPS nature, the LFC operation is vulnerable to attacks, both from physical and cyber standpoints. The cyber-attack strategies ranges from a variety of attacks such as jamming the network communication, time-delay attack, and false data injection. Motivated by these perspectives, this paper studies the cybersecurity issues of the power systems during the LFC operation, and a survey is conducted on the security analysis of LFC. Various cyber-attack strategies, their mathematical models, and vulnerability assessments are performed to understand the possible threats and sources causing failure of frequency regulation. The LFC operation of two-area power systems is considered as a tutorial example to quantify the vulnerabilities. Mitigation strategies through control theoretic approaches are then reviewed and highlighted for LFC operation under cyber-attack.

Author(s):  
Semaria Ruiz ◽  
Julian Patiño ◽  
Jairo Espinosa

<pre>The increasing use of renewable technologies such as wind turbines in power systems may require the contribution of these new sources into grid ancillary services, such as Load Frequency Control. Hence, this work dealt with the performance comparison of two traditional control structures, PI and <span>LQR</span>, for secondary regulation of Load Frequency Control with the participation of variable-speed wind turbines. For this purpose, the doubly-fed induction generator wind turbine was modeled with additional control loops for emulation of the inertial response of conventional machines for frequency regulation tasks. Performance of proposed strategies was verified through simulation in a benchmark adapted from the <span>WSCC</span> 3 machines 9-bus test system. Results showed overall superior performance for <span>LQR</span> controller, although requiring more strenuous control effort from conventional units than PI control.</pre>


2020 ◽  
Vol 53 (2) ◽  
pp. 8037-8042
Author(s):  
Flavio R. de A. F. Mello ◽  
Dimitra Apostolopoulou ◽  
Eduardo Alonso

Author(s):  
Diego Maldonado Andrade ◽  
Silvana Gamboa ◽  
Jackeline Abad Torres

Sign in / Sign up

Export Citation Format

Share Document