scholarly journals Comparison of Compressed Sensing and Gradient and Spin-Echo in Breath-Hold 3D MR Cholangiopancreatography: Qualitative and Quantitative Analysis

Diagnostics ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 634
Author(s):  
Weon Jang ◽  
Ji Soo Song ◽  
Sang Heon Kim ◽  
Jae Do Yang

While magnetic resonance cholangiopancreatography (MRCP) is routinely used, compressed sensing MRCP (CS-MRCP) and gradient and spin-echo MRCP (GRASE-MRCP) with breath-holding (BH) may allow sufficient image quality with shorter acquisition times. This study qualitatively and quantitatively compared BH-CS-MRCP and BH-GRASE-MRCP and evaluated their clinical effectiveness. Data from 59 consecutive patients who underwent both BH-CS-MRCP and BH-GRASE-MRCP were qualitatively analyzed using a five-point Likert-type scale. The signal-to-noise ratio (SNR) of the common bile duct (CBD), contrast-to-noise ratio (CNR) of the CBD and liver, and contrast ratio between periductal tissue and the CBD were measured. Paired t-test, Wilcoxon signed-rank test, and McNemar’s test were used for statistical analysis. No significant differences were found in overall image quality or duct visualization of the CBD, right and left 1st level intrahepatic duct (IHD), cystic duct, and proximal pancreatic duct (PD). BH-CS-MRCP demonstrated higher background suppression and better visualization of right (p = 0.004) and left 2nd level IHD (p < 0.001), mid PD (p = 0.003), and distal PD (p = 0.041). Image quality degradation was less with BH-GRASE-MRCP than BH-CS-MRCP (p = 0.025). Of 24 patients with communication between a cyst and the PD, 21 (87.5%) and 15 patients (62.5%) demonstrated such communication on BH-CS-MRCP and BH-GRASE-MRCP, respectively. SNR, contrast ratio, and CNR of BH-CS-MRCP were higher than BH-GRASE-MRCP (p < 0.001). Both BH-CS-MRCP and BH-GRASE-MRCP are useful imaging methods with sufficient image quality. Each method has advantages, such as better visualization of small ducts with BH-CS-MRCP and greater time saving with BH-GRASE-MRCP. These differences allow diverse choices for visualization of the pancreaticobiliary tree in clinical practice.

Diagnostics ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 376
Author(s):  
Ji Soo Song ◽  
Seung Hun Kim ◽  
Bernd Kuehn ◽  
Mun Young Paek

Magnetic resonance cholangiopancreatography (MRCP) has been widely used in clinical practice, and recently developed compressed-sensing accelerated MRCP (CS-MRCP) has shown great potential in shortening the acquisition time. The purpose of this prospective study was to evaluate the clinical feasibility and image quality of optimized breath-hold CS-MRCP (BH-CS-MRCP) and conventional navigator-triggered MRCP. Data from 124 consecutive patients with suspected pancreaticobiliary diseases were analyzed by two radiologists using a five-point Likert-type scale. Communication between a cyst and the pancreatic duct (PD) was analyzed. Signal-to-noise ratio (SNR) of the common bile duct (CBD), contrast ratio between the CBD and periductal tissue, and contrast-to-noise ratio (CNR) of the CBD and liver were measured. Optimized BH-CS-MRCP showed significantly fewer artifacts with better background suppression and overall image quality. Optimized BH-CS-MRCP demonstrated communication between a cyst and the PD better than conventional MRCP (96.7% vs. 76.7%, p = 0.048). SNR, contrast ratio, and CNR were significantly higher with optimized BH-CS-MRCP (p < 0.001). Optimized BH-CS-MRCP showed comparable or even better image quality than conventional MRCP, with improved visualization of communication between a cyst and the PD.


2020 ◽  
Vol 30 (11) ◽  
pp. 6014-6021
Author(s):  
Benjamin Henninger ◽  
Michael Steurer ◽  
Michaela Plaikner ◽  
Elisabeth Weiland ◽  
Werner Jaschke ◽  
...  

Abstract Objectives To evaluate magnetic resonance cholangiopancreatography (MRCP) with compressed sensing (CS) for the assessment of branch duct intraductal papillary mucinous neoplasm (BD-IPMN) of the pancreas. For this purpose, conventional navigator-triggered (NT) sampling perfection with application-optimized contrast using different flip angle evolutions (SPACE) MRCP was compared with various CS-SPACE-MRCP sequences in a clinical setting. Methods A total of 41 patients (14 male, 27 female, mean age 68 years) underwent 1.5-T MRCP for the evaluation of BD-IPMN. The MRCP protocol consisted of the following sequences: conventional NT-SPACE-MRCP, CS-SPACE-MRCP with long (BHL, 17 s) and short single breath-hold (BHS, 8 s), and NT-CS-SPACE-MRCP. Two board-certified radiologists evaluated image quality, duct sharpness, duct visualization, lesion conspicuity, confidence, and communication with the main pancreatic duct in consensus using a 5-point scale (1–5), with higher scores indicating better quality/delineation/confidence. Maximum intensity projection reconstructions and originally acquired data were used for evaluation. Wilcoxon signed-rank test was used to compare the intra-individual difference between sequences. Results BHS-CS-SPACE-MRCP had the highest scores for image quality (3.85 ± 0.79), duct sharpness (3.81 ± 1.05), and duct visualization (3.81 ± 1.01). There was a significant difference compared with NT-CS-SPACE-MRCP (p < 0.05) but no significant difference to the standard NT-SPACE-MRCP (p > 0.05). Concerning diagnostic quality, BHS-CS-SPACE-MRCP had the highest scores in lesion conspicuity (3.95 ± 0.92), confidence (4.12 ± 1.08), and communication (3.8 ± 1.06), significantly higher compared with NT-SPACE-MRCP, BHL-SPACE-MRCP, and NT-CS-SPACE-MRCP (p = <0.05). Conclusions MRCP with CS 3D SPACE for the evaluation of BD-IPMN at 1.5 T provides the best results using a short breath-hold sequence. This approach is feasible and an excellent alternative to standard NT 3D MRCP sequences. Key Points • 1.5-T MRCP with compressed sensing for the evaluation of branch duct IPMN is a feasible method. • Short breath-hold sequences provide the best results for this purpose.


2021 ◽  
Author(s):  
Hyun Gi Kim ◽  
Se Won Oh ◽  
Dongyeob Han ◽  
Jee Young Kim ◽  
Gye Yeon Lim

Abstract The purpose of this study was to compare the image quality of the single-slab, 3D T2-weighted turbo-spin-eco sequence with high sampling efficiency (SPACE) with accelerated SPACE using compressed sensing (CS-SPACE) in paediatric brain imaging. A total of 116 brain MRI (53 in SPACE group and 63 in CS-SPACE group) were obtained from children aged 16 years old or younger. Quantitative image quality was evaluated using the signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR). The sequences were qualitatively evaluated for overall image quality, SNR, general artifact, cerebrospinal fluid (CSF)-related artifact and grey-white matter differentiation. The two sequences were compared for the total and for two age groups (< 24 months vs. ≥ 24 months). CS application in 3D T2-weighted imaging resulted in 8.5% reduction in scanning time. Quantitative image quality analysis showed higher SNR (Median [Interquartile range]; 29 [25] vs. 23 [14], P = .005) and CNR (0.231 [0.121] vs. 0.165 [0.120], P = .027) with CS-SPACE compared to SPACE. Qualitative image quality analysis showed better image quality with CS-SPACE for general artifact (P = .024) and CSF-related artifact (P < .001). CSF-related artifacts reduction was more prominent in the older age group (≥ 24 months). Overall image quality (P = .162), SNR (P = .726), and grey-white matter differentiation (P = .397) were comparable between SPACE and CS-SPACE. In conclusion, compressed sensing applied 3D T2-weighted images showed comparable or superior image quality compared to conventional images with reduced acquisition time for paediatric brain.


2020 ◽  
pp. 028418512092456
Author(s):  
Jingjing Liu ◽  
Hang Jin ◽  
Yinyin Chen ◽  
Caixia Fu ◽  
Caizhong Chen ◽  
...  

Background Cardiac magnetic resonance (MR) has become an essential diagnostic imaging modality in cardiovascular disease. However, the insufficient image quality of traditional breath-hold (BH) T2-weighted (T2W) imaging may compromise its diagnostic accuracy. Purpose To assess the efficacy of the BLADE technique to reduce motion artifacts and improve the image quality. Material and Methods Free-breathing TSE-T2W imaging sequence with cartesian and BLADE k-space trajectory were acquired in 20 patients. Thirty patients underwent conventional BH turbo spin-echo (TSE) T2W imaging and free-breathing BLADE T2W (FB BLADE-T2W) imaging. Twenty-one patients who had a signal loss of myocardium in BH short-axis T2W turbo inversion recovery (TSE-T2W-TIR) were scanned using free-breathing BLADE T2W turbo inversion recovery (BLADE TSE-T2W-TIR). The overall image quality, blood nulling, and visualization of the heart were scored on a 5-point Likert scale. The signal loss of myocardium, incomplete fat suppression near the myocardium, and the streaking or ghosting artifacts were noted in T2W-TIR sequences additionally. Results The overall imaging quality, blood nulling, and the visualization of heart structure of FB BLADE-T2W imaging sequence were significantly better than those of FB T2W imaging with Cartesian k-space trajectory and BH TSE-T2W imaging sequence ( P<0.01). The FB BLADE TSE-T2W-TIR reduces the myocardium signal dropout ( P<0.05), incomplete fat suppression near myocardium ( P<0.05), and the streaking and ghosting artifacts ( P<0.05) in comparison with the BH TSE-T2W-TIR. Conclusions FB BLADE T2W imaging provides improved myocardial visibility, less motion sensitivity, and better image quality. It may be applied in patients who have poor breath-holding capability.


2021 ◽  
Vol 12 ◽  
Author(s):  
Feifei Gao ◽  
Zejun Wen ◽  
Shewei Dou ◽  
Xiaojing Kan ◽  
Shufang Wei ◽  
...  

Background/Aim: The turbo spin-echo (TSE) sequence is widely used for musculoskeletal (MSK) imaging; however, its acquisition speed is limited and can be easily affected by motion artifacts. We aimed to evaluate whether the use of a simultaneous multi-slice TSE (SMS-TSE) sequence can accelerate MSK imaging while maintaining image quality when compared with the routine TSE sequence.Methods: We prospectively enrolled 71 patients [mean age, 37.43 ± 12.56 (range, 20–67) years], including 37 men and 34 women, to undergo TSE and SMS sequences. The total scanning times for the wrist, ankle and knee joint with routine sequence were 14.92, 13.97, and 13.48 min, respectively. For the SMS-TSE sequence, they were 7.52, 7.20, and 6.87 min. Quantitative parameters, including the signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR), were measured. Three experienced MSK imaging radiologists qualitatively evaluated the image quality of bone texture, cartilage, tendons, ligament, meniscus, and artifact using a 5-point evaluation system, and the diagnostic performance of the SMS-TSE sequences was evaluated.Results: Compared with the routine TSE sequences, the scanning time was lower by 49.60, 48.46, and 49.04% using SMS-TSE sequences for the wrist, ankle, and knee joints, respectively. For the SNR comparison, the SMS-TSE sequences were significantly higher than the routine TSE sequence for wrist (except for Axial-T2WI-FS), ankle, and knee joint MR imaging (all p &lt; 0.05), but no statistical significance was obtained for the CNR measurement (all p &gt; 0.05, except for Sag-PDWI-FS in ankle joint). For the wrist joint, the diagnostic sensitivity, specificity, and accuracy were 88.24, 100, and 92%. For the ankle joint, they were 100, 75, and 93.33%. For the knee joint, they were 87.50, 85.71, and 87.10%.Conclusion: The use of the SMS-TSE sequence in the wrist, ankle, and knee joints can significantly reduce the scanning time and show similar image quality when compared with the routine TSE sequence.


Author(s):  
Jussi Schultz ◽  
Reetta Siekkinen ◽  
Mojtaba Jafari Tadi ◽  
Mika Teräs ◽  
Riku Klén ◽  
...  

Abstract Background Dual-gating reduces respiratory and cardiac motion effects but increases noise. With motion correction, motion is minimized and image quality preserved. We applied motion correction to create end-diastolic respiratory motion corrected images from dual-gated images. Methods [18F]-fluorodeoxyglucose ([18F]-FDG) PET images of 13 subjects were reconstructed with 4 methods: non-gated, dual-gated, motion corrected, and motion corrected with 4D-CT (MoCo-4D). Image quality was evaluated using standardized uptake values, contrast ratio, signal-to-noise ratio, coefficient of variation, and contrast-to-noise ratio. Motion minimization was evaluated using myocardial wall thickness. Results MoCo-4D showed improvement for contrast ratio (2.83 vs 2.76), signal-to-noise ratio (27.5 vs 20.3) and contrast-to-noise ratio (14.5 vs 11.1) compared to dual-gating. The uptake difference between MoCo-4D and non-gated images was non-significant (P > .05) for the myocardium (2.06 vs 2.15 g/mL), but significant (P < .05) for the blood pool (.80 vs .86 g/mL). Non-gated images had the lowest coefficient of variation (27.3%), with significant increase for all other methods (31.6-32.5%). MoCo-4D showed smallest myocardial wall thickness (16.6 mm) with significant decrease compared to non-gated images (20.9 mm). Conclusions End-diastolic respiratory motion correction and 4D-CT resulted in improved motion minimization and image quality over standard dual-gating.


2019 ◽  
Author(s):  
Thomas B Shaw ◽  
Steffen Bollmann ◽  
Nicole T Atcheson ◽  
Christine Guo ◽  
Jurgen Fripp ◽  
...  

AbstractParticipant movement can deleteriously affect MR image quality. Further, for the visualization and segmentation of small anatomical structures, there is a need to improve image quality, specifically signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR), by acquiring multiple anatomical scans consecutively. We aimed to ameliorate movement artefacts and increase SNR in a high-resolution turbo spin-echo (TSE) sequence acquired thrice using non-linear realignment in order to improve segmentation consistency of the hippocampus subfields. We assessed the method in young healthy participants, Motor Neurone Disease patients, and age matched controls. Results show improved image segmentation of the hippocampus subfields when comparing template-based segmentations with individual segmentations with Dice overlaps N=51; ps < 0.001 (Friedman’s test) and higher sharpness ps < 0.001 in non-linearly realigned scans as compared to linearly, and arithmetically averaged scans.


2020 ◽  
Author(s):  
Yaru Sheng ◽  
Rujian Hong ◽  
Yan Sha ◽  
Zhongshuai Zhang ◽  
Kun Zhou ◽  
...  

Abstract Background: Based on the high resolution of soft tissue, MRI has gained increasing importance in the evaluation of cholesteatoma, especially diffusion-weighted imaging(DWI). The purpose of this study was to evaluate the role of 2D turbo gradient- and spin-echo (TGSE) diffusion-weighted (DW) pulse sequence with BLADE trajectory technique in the diagnosis of cholesteatoma at 3T and to qualitatively and quantitatively compare the image quality between the TGSE BLADE and RESOLVE methods.Method: A total of 42 patients (23 males, 19 females; age range, 7-65 years; mean, 40.1 years) with surgically confirmed cholesteatoma in the middle ear were enrolled in this study. All patients underwent DWI (both the prototype TGSE BLADE DWI sequence and RESOLVE DWI sequence) using a 3-T scanner with a 64-channel brain coil.Qualitative imaging parameters (imaging sharpness, geometric distortion, ghosting artifacts, and overall imaging quality) and quantitative imaging parameters (apparent diffusion coefficient [ADC], signal-to-noise ratio [SNR], contrast, and contrast-to-noise ratio [CNR] for the two diffusion acquisition techniques were assessed by two independent radiologists. Result: Comparison of the qualitative scores indicated that TGSE BLADE DWI produced less geometric distortion and ghosting artifacts (P<0.001) and higher image quality (P<0.001) than RESOLVE DWI. Comparison of the evaluated quantitative image parameters between TGSE and RESOLVE showed that TGSE BLADE DWI produced a significantly lower SNR (P<0.001) and higher parameter values (both contrast and CNR (P < 0.001)) than RESOLVE DWI.The ADC (P<0.001) measured by TGSE BLADE DWI (0.763×10-3 s/mm2) is significantly lower than that measured by RESOLVE DWI (0.928×10-3 s/mm2). Conclusion: Comparing with RESOLVE DWI, TGSE BLADE DWI can significantly improve the image quality of cholesteatoma by reducing magnetic sensitive artifacts, distortion, and blurring. TGSE BLADE DWI is more valuable for the diagnosis of small-sized (2mm) cholesteatoma lesions compare with RESOLVE DWI image. However, TGSE BLADE DWI also has some disadvantages: the whole image intensity is slightly low, so that the anatomical details of the air-bone interface are not well shown, which is the place to be improved in the future.


Author(s):  
Tianyang Gao ◽  
Zhao Lu ◽  
Fengzhe Wang ◽  
Heng Zhao ◽  
Jiazheng Wang ◽  
...  

Objective: To compare conventional sensitivity encoding turbo spin-echo (SENSE-TSE) with compressed sensing plus SENSE turbo spin-echo (CS-TSE) in lumbar vertebrae magnetic resonance imaging (MRI). Methods: This retrospective study of lumbar vertebrae MRI included 600 patients; 300 patients received SENSE-TSE and 300 patients received CS-TSE. The SENSE acceleration factor was 1.4 for T1WI, 1.7 for T2WI, and 1.7 for PDWI. The CS total acceleration factor was 2.4, 3.6, 4.0, and 4.0 for T1WI, T2WI, PDWI sagittal, and T2WI transverse, respectively. The image quality of each MRI sequence was evaluated objectively by the signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) and subjectively on a five-point scale. Two radiologists independently reviewed the MRI sequences of the 300 patients receiving CS-TSE, and their diagnostic consistency was evaluated. The degree of intervertebral foraminal stenosis and nerve root compression was assessed using the T1WI sagittal and T2WI transverse images. Results: The scan time was reduced from 7 min 28 s to 4 min 26 s with CSTSE. The median score of nerve root image quality was 5 (p > 0.05). The diagnostic consistency using CS-TSE images between the two radiologists was high for diagnosing lumbar diseases (κ > 0.75) and for evaluating the degree of lumbar foraminal stenosis and nerve root compression (κ = 0.882). No differences between SENSE-TSE and CS-TSE were observed for sensitivity, specificity, positive predictive value, or negative predictive value. Conclusion: CS-TSE has potential for diagnosing lumbar vertebrae and disc disorders.


Sign in / Sign up

Export Citation Format

Share Document