scholarly journals Visual Evaluation of Image Quality of a Low Dose 2D/3D Slot Scanner Imaging System Compared to Two Conventional Digital Radiography X-ray Imaging Systems

Diagnostics ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1932
Author(s):  
Ahmed Jibril Abdi ◽  
Bo Mussmann ◽  
Alistair Mackenzie ◽  
Oke Gerke ◽  
Gitte Maria Jørgensen ◽  
...  

The purpose of this study was to assess the image quality of the low dose 2D/3D slot scanner (LDSS) imaging system compared to conventional digital radiography (DR) imaging systems. Visual image quality was assessed using the visual grading analysis (VGA) method. This method is a subjective approach that uses a human observer to evaluate and optimise radiographic images for different imaging technologies. Methods and materials: ten posterior-anterior (PA) and ten lateral (LAT) images of a chest anthropomorphic phantoms and a knee phantom were acquired by an LDSS imaging system and two conventional DR imaging systems. The images were shown in random order to three (chest) radiologists and three experienced (knee) radiographers, who scored the images against a number of criteria. Inter- and intraobserver agreement was assessed using Fleiss’ kappa and weighted kappa. Results: the statistical comparison of the agreement between the observers showed good interobserver agreement, with Fleiss’ kappa coefficients of 0.27–0.63 and 0.23–0.45 for the chest and knee protocols, respectively. Comparison of intraobserver agreement also showed good agreement with weighted kappa coefficients of 0.27–0.63 and 0.23–0.45 for the chest and knee protocols, respectively. The LDSS imaging system achieved significantly higher VGA image quality compared to the DR imaging systems in the AP and LAT chest protocols (p < 0.001). However, the LDSS imaging system achieved lower image quality than one DR system (p ≤ 0.016) and equivalent image quality to the other DR systems (p ≤ 0.27) in the knee protocol. The LDSS imaging system achieved effective dose savings of 33–52% for the chest protocol and 30–35% for the knee protocol compared with DR systems. Conclusions: this work has shown that the LDSS imaging system has the potential to acquire chest and knee images at diagnostic quality and at a lower effective dose than DR systems.

Diagnostics ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1699
Author(s):  
Ahmed Jibril Abdi ◽  
Bo R. Mussmann ◽  
Alistair Mackenzie ◽  
Oke Gerke ◽  
Benedikte Klaerke ◽  
...  

The aim of this study was to determine the quantitative image quality metrics of the low-dose 2D/3D EOS slot scanner X-ray imaging system (LDSS) compared with conventional digital radiography (DR) X-ray imaging systems. The effective detective quantum efficiency (eDQE) and effective noise quantum equivalent (eNEQ) were measured using chest and knee protocols. Methods: A Nationwide Evaluation of X-ray Trends (NEXT) of a chest adult phantom and a PolyMethylmethacrylate (PMMA) phantom were used for the chest and knee protocols, respectively. Quantitative image quality metrics, including effective normalised noise power spectrum (eNNPS), effective modulation transfer function (eMTF), eDQE and eNEQ of the LDSS and DR imaging systems were assessed and compared. Results: In the chest acquisition, the LDSS imaging system achieved significantly higher eNEQ and eDQE than the DR imaging systems at lower and higher spatial frequencies (0.001 > p ≤ 0.044). For the knee acquisition, the LDSS imaging system also achieved significantly higher eNEQ and eDQE than the DR imaging systems at lower and higher spatial frequencies (0.001 > p ≤ 0.002). However, there was no significant difference in eNEQ and eDQE between DR systems 1 and 2 at lower and higher spatial frequencies (0.10 < p < 1.00) for either chest or knee protocols. Conclusion: The LDSS imaging system performed well compared to the DR systems. Thus, we have demonstrated that the LDSS imaging system has the potential to be used for clinical diagnostic purposes.


2021 ◽  
Vol 15 ◽  
pp. 174830262110080
Author(s):  
Changjun Zha* ◽  
Qian Zhang* ◽  
Huimin Duan

Traditional single-pixel imaging systems are aimed mainly at relatively static or slowly changing targets. When there is relative motion between the imaging system and the target, sizable deviations between the measurement values and the real values can occur and result in poor image quality of the reconstructed target. To solve this problem, a novel dynamic compressive imaging system is proposed. In this system, a single-column digital micro-mirror device is used to modulate the target image, and the compressive measurement values are obtained for each column of the image. Based on analysis of the measurement values, a new recovery model of dynamic compressive imaging is given. Differing from traditional reconstruction results, the measurement values of any column of vectors in the target image can be used to reconstruct the vectors of two adjacent columns at the same time. Contingent upon characteristics of the results, a method of image quality enhancement based on an overlapping average algorithm is proposed. Simulation experiments and analysis show that the proposed dynamic compressive imaging can effectively reconstruct the target image; and that when the moving speed of the system changes within a certain range, the system reconstructs a better original image. The system overcomes the impact of dynamically changing speeds, and affords significantly better performance than traditional compressive imaging.


Author(s):  
Michael Esser ◽  
Sabine Hess ◽  
Matthias Teufel ◽  
Mareen Kraus ◽  
Sven Schneeweiß ◽  
...  

Purpose To analyze possible influencing factors on radiation exposure in pediatric chest CT using different approaches for radiation dose optimization and to determine major indicators for dose development. Materials and Methods In this retrospective study at a clinic with maximum care facilities including pediatric radiology, 1695 chest CT examinations in 768 patients (median age: 10 years; range: 2 days to 17.9 years) were analyzed. Volume CT dose indices, effective dose, size-specific dose estimate, automatic dose modulation (AEC), and high-pitch protocols (pitch ≥ 3.0) were evaluated by univariate analysis. The image quality of low-dose examinations was compared to higher dose protocols by non-inferiority testing. Results Median dose-specific values annually decreased by an average of 12 %. High-pitch mode (n = 414) resulted in lower dose parameters (p < 0.001). In unenhanced CT, AEC delivered higher dose values compared to scans with fixed parameters (p < 0.001). In contrast-enhanced CT, the use of AEC yielded a significantly lower radiation dose only in patients older than 16 years (p = 0.04). In the age group 6 to 15 years, the values were higher (p < 0.001). The diagnostic image quality of low-dose scans was non-inferior to high-dose scans (2.18 vs. 2.14). Conclusion Radiation dose of chest CT was reduced without loss of image quality in the last decade. High-pitch scanning was an independent factor in this context. Dose reduction by AEC was limited and only relevant for patients over 16 years. Key Points Citation Format


2020 ◽  
Vol 49 (6) ◽  
pp. 20190495 ◽  
Author(s):  
Durer Iskanderani ◽  
Mats Nilsson ◽  
Per Alstergren ◽  
Xie-Qi Shi ◽  
Kristina Hellen-halme

Objective: Evaluation of cone beam CT (CBCT) examination with a low-dose scanning protocol for assessment of the temporomandibular joint (TMJ). Methods: 34 adult patients referred for CBCT imaging of the TMJ underwent two examinations with two scanning protocols, a manufacturer-recommended protocol (default) and a low-dose protocol where the tube current was reduced to 20% of the default protocol. Three image stacks were reconstructed: default protocol, low-dose protocol, and processed (using a noise reduction algorithm) low-dose protocol. Four radiologists evaluated the images. The Sign test was used to evaluate visibility of TMJ anatomic structures and image quality. Receiver operating characteristic analyzes were performed to assess the diagnostic accuracy. κ values were used to evaluate intraobserver agreement. Results: With the low-dose and processed protocols, visibility of the TMJ anatomical structures and overall image quality were comparable to the default protocol. No significant differences in radiographic findings were found for the two low-dose protocols compared to the default protocol. The area under the curves (Az) averaged for the low-dose and processed protocols, according to all observers, were 0.931 and 0.941, respectively. Intraobserver agreement was good to very good. Conclusion: For the CBCT unit used in this study, the low-dose CBCT protocol for TMJ examination was diagnostically comparable to the manufacturer-recommended protocol, but delivered a five times lower radiation dose. There is an urgent need to evaluate protocols for CBCT examinations of TMJ in order to optimize them for a radiation dose as low as diagnostically acceptable (the as low as diagnostically acceptable principle recommended by NCRP).


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Karen Panetta ◽  
Arash Samani ◽  
Sos Agaian

Medical imaging systems often require image enhancement, such as improving the image contrast, to provide medical professionals with the best visual image quality. This helps in anomaly detection and diagnosis. Most enhancement algorithms are iterative processes that require many parameters be selected. Poor or nonoptimal parameter selection can have a negative effect on the enhancement process. In this paper, a quantitative metric for measuring the image quality is used to select the optimal operating parameters for the enhancement algorithms. A variety of measures evaluating the quality of an image enhancement will be presented along with each measure’s basis for analysis, namely, on image content and image attributes. We also provide guidelines for systematically choosing the proper measure of image quality for medical images.


Author(s):  
Zhiying Leng ◽  
Zhentao Wang

Abstract As an essential method for security inspection in nuclear facilities, digital radiography has the ability to find hidden contraband efficiently. However, the images obtained by current scanning digital radiography system can be degraded by several factors, such as statistical noise and response time of detectors. At high scanning speed, the statistical noise and vibration of the system deteriorates the quality of images. In addition, the reduction of image quality will influence the accuracy of image observation and recognition. To meet the demand of detection efficiency and quality, it is necessary to guarantee the quality of images under high scanning speed. Thus, to improve image quality of vehicles’ digital radiography at a certain scanning speed, we proposed an approach (VDR-CNN) to reduce or eliminate image noise, which is a convolutional neural network (CNN) with residual learning. The high-quality images obtained at low scanning speed of system served as the ground-truth image for VDR-CNN, while the low-quality counterpart corresponding to the high scanning speed served as the input. Then, the two images mentioned above constitute a training pair. By training this network with a set of training pairs, the mapping function of promoting image quality will be automatically learned so that the restored image can be obtained from the low-quality counterpart through the trained VDR-CNN. Moreover, this method avoids the difficulty in figuring and analyzing the complicated image degradation model. A series of experiments was carried out through the 60Co inspection system developed by Institute of Nuclear and New Energy Technology, Tsinghua University. The experimental result shows that this method has attained a satisfying result in denoising and preserving details of images and outperforms BM3D algorithm in terms of both image quality improvement and the processing speed. In conclusion, the proposed method improves the image quality of vehicles’ digital radiography and it is proved better than traditional methods.


Sign in / Sign up

Export Citation Format

Share Document