high scanning speed
Recently Published Documents


TOTAL DOCUMENTS

26
(FIVE YEARS 10)

H-INDEX

3
(FIVE YEARS 2)

Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5662
Author(s):  
Ali Ebrahimzadeh Pilehrood ◽  
Amirhossein Mashhuriazar ◽  
Amir Hossein Baghdadi ◽  
Zainuddin Sajuri ◽  
Hamid Omidvar

Laser metal deposition (LMD) is one of the manufacturing processes in the industries, which is used to enhance the properties of components besides producing and repairing important engineering components. In this study, Stellite 6 was deposited on precipitation-hardened martensitic stainless steel (17-4 PH) by using the LMD process, which employed a pulsed Nd:YAG laser. To realize a favor deposited sample, the effects of three LMD parameters (focal length, scanning speed, and frequency) were investigated, as well as microstructure studies and the results of a microhardness test. Some cracks were observed in the deposited layers with a low scanning speed, which were eliminated by an augment of the scanning speed. Furthermore, some defects were found in the deposited layers with a high scanning speed and a low frequency, which can be related to the insufficient laser energy density and a low overlapping factor. Moreover, various morphologies were observed within the microstructure of the samples, which can be attributed to the differences in the stability criterion and cooling rate across the layer. In the long run, a defect-free sample (S-120-5.5-25) possessing suitable geometrical attributes (wetting angle of 57° and dilution of 25.1%) and a better microhardness property at the surface (≈335 Hv) has been introduced as a desirable LMDed sample.


2021 ◽  
pp. 107754632110381
Author(s):  
Mohammadreza Sajjadi ◽  
Mahmood Chahari ◽  
Hossein Nejat Pishkenari ◽  
Gholamreza Vossoughi

In this study, a nonlinear observer for high-speed estimation of the sample surface topography in a small duration of the probe transient motion utilizing a 2DOF model of TR-AFM is proposed. Since the time duration to reach the steady-state periodic motion of the oscillating probe in conventional imaging methods is relatively high, the proposed nonlinear observer in this research is able to address this limitation and estimate the surface topography throughout transient oscillation of the microcantilever. With this aim, topography estimation process utilizing a Thau observer without any linearization of the system dynamics is designed and coupled with the system dynamics to achieve sample topography. The stability of the proposed observer coupled with controller is verified by the Lyapunov stability theorem for the first time, and hence, linearization of the model is not required. Simulation results demonstrate the feasibility of the presented approach to estimate different sample heights with high accuracy and a relatively high scanning speed. Additionally, the effects of measurement noise and horizontal nanoneedle tip displacement on the performance of proposed technique are investigated.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Xiangzhan Yu ◽  
Zhichao Hu ◽  
Yi Xin

Computer systems and applications on the internet provide services to outsiders and, at the same time, the vulnerabilities may be exploited by attackers and leak some sensitive private information. To collect and monitor the service information provided by the network environment such as IoT (Internet of Things), vehicular networks, cloud computing, and cloud storage, it is particularly important that a system can provide faster service discovery for discovering and identifying specific network services. The current service discovery systems mainly use port scanning technology, including Nmap, Zmap, and Masscan. However, these technologies hard code the service features and only support common services so that cannot cope with real-time updates and changing network services. To solve the above problems, this paper proposed a customizable distributed network service discovery system based on stateless scanning technology of Masscan and proposed a customizable interactive pattern set syntax. The system used random destination address technologies to scan for Ipv4 address allocation and used a distributed deployment scheme. Experimental results show that the system has high scanning speed and has high adaptability to new services and special services.


2021 ◽  
Vol 127 (5) ◽  
Author(s):  
Florian Schepers ◽  
Carsten Fallnich

AbstractThe conversion of transverse mode-locked (TML) laser beams from a Hermite-Gaussian (HG) to a Laguerre-Gaussian (LG) mode set using a cylindrical lens mode converter was demonstrated experimentally. By changing the spatial symmetry of the beams new spatio-temporal dynamics for TML lasers were enabled. In particular, the fast linear motion of an oscillating laser spot, generated by a TML laser based on HG modes, was translated into the circular motion of a TML laser beam based on LG modes. The mode conversion was demonstrated successfully for different average mode orders. Apart from an average ellipticity of about $$6\%$$ 6 % , the converted beam profiles remained circular over the propagation from the near- into the far-field. The remaining ellipticity seemed to be introduced by astigmatism of the incident HG TML beam, which could be compensated before conversion. Due to their radial symmetry and high scanning speed TML laser beams based on LG modes are well suited for precision applications like STED or Minflux microscopy.


Author(s):  
D. Voswinkel ◽  
D. Kloidt ◽  
O. Grydin ◽  
M. Schaper

AbstractLaser surface treatment of metals is one option to improve their properties for adhesive bonding. In this paper, a pulsed YVO4 Laser source with a wavelength of 1064 nm and a maximum power of 25 W was utilized to increase the surface area of the steel HCT490X in order to improve its bonding properties with a carbon fibre reinforced polymer (CFRP). Investigated was the influence of the scanning speed of the laser source on the bonding properties. For this purpose, the steel surfaces were ablated at a scanning speed between 1500 and 4500 mm/s. Afterwards the components were bonded with the adhesive HexBond™ 677. After lap shear tests were carried out on the specimen, the surfaces were inspected using scanning electron microscopy (SEM). The experiments revealed that the bonding quality can be improved with a high scanning speed, even when the surface is not completely ablated.


Author(s):  
Zhiying Leng ◽  
Zhentao Wang

Abstract As an essential method for security inspection in nuclear facilities, digital radiography has the ability to find hidden contraband efficiently. However, the images obtained by current scanning digital radiography system can be degraded by several factors, such as statistical noise and response time of detectors. At high scanning speed, the statistical noise and vibration of the system deteriorates the quality of images. In addition, the reduction of image quality will influence the accuracy of image observation and recognition. To meet the demand of detection efficiency and quality, it is necessary to guarantee the quality of images under high scanning speed. Thus, to improve image quality of vehicles’ digital radiography at a certain scanning speed, we proposed an approach (VDR-CNN) to reduce or eliminate image noise, which is a convolutional neural network (CNN) with residual learning. The high-quality images obtained at low scanning speed of system served as the ground-truth image for VDR-CNN, while the low-quality counterpart corresponding to the high scanning speed served as the input. Then, the two images mentioned above constitute a training pair. By training this network with a set of training pairs, the mapping function of promoting image quality will be automatically learned so that the restored image can be obtained from the low-quality counterpart through the trained VDR-CNN. Moreover, this method avoids the difficulty in figuring and analyzing the complicated image degradation model. A series of experiments was carried out through the 60Co inspection system developed by Institute of Nuclear and New Energy Technology, Tsinghua University. The experimental result shows that this method has attained a satisfying result in denoising and preserving details of images and outperforms BM3D algorithm in terms of both image quality improvement and the processing speed. In conclusion, the proposed method improves the image quality of vehicles’ digital radiography and it is proved better than traditional methods.


Author(s):  
T Savanth ◽  
Jastej Singh ◽  
JS Gill

A 4kW Yb: YAG solid-state disc laser, with a four-way co-axial cladding head with powder feeding technique was employed to fabricate single-layer clads of Ni-based hardfacing alloy (Colmonoy-5) on medium carbon steel (ASME SA105) substrate by varying the laser processing parameters namely, beam power level (designated as low: 1200 W, medium: 1400 W, and high: 1600 W) and scanning speed (designated as low: 300 mm/min, medium: 400 mm/min, and high: 500mm/min). The laser clads were evaluated for their microstructural characteristics, microhardness, and slurry erosive wear performance with an aim to understand the effect of process parametric variations on their properties. Microstructural analyses of the clads were carried out using an optical microscope and a field-emission scanning electron microscope with attached energy-dispersive X-ray spectrometer supplemented by their Vickers microhardness testing and X-ray diffraction examination. The variation in laser processing parameters exerted a strong influence on the microstructural features of the clads in terms of γ-Ni dendrite size as well as morphology and distribution of various complex precipitates such as Cr-carbides and borides with relatively uniform distribution observed for the clads corresponding to low laser power and high scanning speed. The variation in laser power had relatively a greater influence on microhardness than the scanning speed variation. Micro-cutting, plastic deformation, crater formation besides ploughing away of the softer matrix were the typical fracture features associated with slurry eroded clads when examined under field-emission scanning electron microscope. Results of the slurry erosive wear tests showed that the clads pertaining to low laser power and high scanning speed exhibited superior wear resistance as compared to their counterparts.


Coatings ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 300 ◽  
Author(s):  
Haijiang Wang ◽  
Wei Zhang ◽  
Yingbo Peng ◽  
Mingyang Zhang ◽  
Shuyu Liu ◽  
...  

FeCoCrNi-Mo high entropy alloy/diamond composite coatings were successfully prepared by high speed laser cladding. A high scanning speed was adopted (>30 mm/s), and the effects of laser power, scanning speed, and diamond content on the microstructure and wear resistance of the composite coating were studied. The processing parameters of laser cladding had significant influence on the dilution ratio, graphitization of diamond, and wear resistance of the composite coatings. When the laser cladding parameters were 3000 W of laser power and the high scanning speed of 50 mm/s, the composite coating exhibited a uniform microstructure, the lowest dilution ratio, and the best wear resistance. The wear resistance of the composite coating was enhanced with the addition of diamond, but microcracks also increased. When the amount of diamond was 15 wt.%, the best combination of microstructures and wear resistance was obtained.


2020 ◽  
pp. 38-43
Author(s):  
V. V. Pankov ◽  
D. S. Pomerantsev

This article discusses the current state of standardization in the Russian Federation in the field of application of ultrasonic testing using a phased array. Attention is drawn to the problem of the lack of national standards (especially terminological), which clearly hinders the active development and implementation of the PA UT method in practice. The basic principles of the classical technology of phased arrays are analyzed. Electronic linear scanning, electronic scanning and combined scanning. Combined scanning has several advantages: a high probability of detecting defects, high scanning speed, quick setup and calibration, quick data analysis and small file size in comparison with conventional sector scanning. Some difficulties were noted when trying to work with classical DGS-curves using the synthetic focusing methods SAFT or FMC / TFM with beam focusing at each image reconstruction point.


2019 ◽  
Vol 26 (3) ◽  
pp. 485-498 ◽  
Author(s):  
Seema Negi ◽  
Athul Arun Nambolan ◽  
Sajan Kapil ◽  
Prathamesh Shreekant Joshi ◽  
Manivannan R. ◽  
...  

Purpose Electron beam-based additive manufacturing (EBAM) is an emerging technology to produce metal parts layer-by-layer. The purpose of this paper is to systematically address the research and development carried out for this technology, up till now. Design/methodology/approach This paper identifies several aspects of research and development in EBAM. Findings Electron beam has several unique advantages such as high scanning speed, energy efficiency, versatility for several materials and better part integrity because of a vacuum working environment. Originality/value This paper provides information on different aspects of EBAM with the current status and future scope.


Sign in / Sign up

Export Citation Format

Share Document