scholarly journals Implant Soft-Tissue Attachment Using 3D Oral Mucosal Models—A Pilot Study

2020 ◽  
Vol 8 (3) ◽  
pp. 72
Author(s):  
Emilia Barker ◽  
Lina AlQobaly ◽  
Zahab Shaikh ◽  
Kirsty Franklin ◽  
Keyvan Moharamzadeh

Purpose: The aim of this study was to investigate soft-tissue attachment to different metal, ceramic, and polymer implant surfaces using an inflamed, three-dimensional (3D), tissue-engineered, human oral mucosal model, as well as multiple-endpoint qualitative and quantitative biological approaches. Methods: Normal human oral fibroblasts, OKF6/TERT-2 keratinocytes and THP-1 monocytes were cultured, and full-thickness, 3D oral mucosal models were engineered inside tissue culture inserts. Sand-blasted and acid-etched (SLA) and machined (M) titanium–zirconium alloy (TiZr; commercially known as Roxolid; Institut Straumann AG, Switzerland), ceramic (ZrO2), and polyether ether ketone (PEEK) rods (Ø 4 mm × 8 mm) were inserted into the center of tissue-engineered oral mucosa following a Ø 4mm punch biopsy. Inflammation was simulated with addition of the lipopolysaccharide (LPS) of Escherichia coli (E. coli) and tumor necrosis factor (TNF)-alpha to the culture medium. Implant soft-tissue attachment was assessed using histology, an implant pull-test with PrestoBlue assay, and scanning electron microscopy (SEM). Results: Inflamed, full-thickness, 3D human oral mucosal models with inserted implants were successfully engineered and histologically characterized. The implant pull-test with PrestoBlue assay showed higher viability of the tissue that remained attached to the TiZr-SLA surface compared to the other test groups. This difference was statistically significant (p < 0.05). SEM analysis showed evidence of epithelial cell attachment on different implant surfaces. Conclusions: The inflamed, 3D, oral mucosal model has the potential to be used as a suitable in vitro test system for visualization and quantification of implant soft-tissue attachment. The results of our study indicate greater soft tissue attachment to TiZr-SLA compared to TiZr-M, ceramic, and PEEK surfaces.

1981 ◽  
Vol &NA; (160) ◽  
pp. 268???278 ◽  
Author(s):  
JAMES ARAGONA ◽  
JOHN R. PARSONS ◽  
HAROLD ALEXANDER ◽  
ANDREW B. WEISS

2018 ◽  
Vol 833 ◽  
pp. 328-338 ◽  
Author(s):  
Hiromi Shiratori ◽  
Carmen Feinweber ◽  
Sonja Luckhardt ◽  
Nadja Wallner ◽  
Gerd Geisslinger ◽  
...  

2020 ◽  
Vol 36 (8) ◽  
pp. 1059-1070
Author(s):  
Franziska Ehlicke ◽  
Jonathan Berndt ◽  
Nina Marichikj ◽  
Doris Steinmüller-Nethl ◽  
Heike Walles ◽  
...  

Blood ◽  
1967 ◽  
Vol 30 (2) ◽  
pp. 176-188 ◽  
Author(s):  
MARTIN J. CLINE

Abstract In order to develop a test system for predicting the response to chemotherapeutic agents, leukocytes from patients with leukemia and leukolymphosarcoma were cultured in vitro and the effect of several drugs on the incorporation of H3-uridine into ribonucleic acid was measured. Cortisol, vincristine and cytosine arabinoside at concentrations near the therapeutic range produced inhibition of H3-uridine incorporation in sensitive leukocytes. The in vitro effects of 6-mercaptopurine and methotrexate were variable. In 39 trials on 25 patients with leukemia or lymphosarcoma, the in vitro test was used successfully to predict the response to treatment with prednisone and vincristine. It was concluded that the in vitro test system can predict the in vivo cytotoxicity of certain drugs for malignant cells, although it cannot be used to predict the likelihood of the induction of remissions with these drugs.


Sign in / Sign up

Export Citation Format

Share Document