junctional epithelium
Recently Published Documents


TOTAL DOCUMENTS

154
(FIVE YEARS 15)

H-INDEX

27
(FIVE YEARS 1)

Pathogens ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1507
Author(s):  
Taichi Ishikawa ◽  
Daisuke Sasaki ◽  
Ryo Aizawa ◽  
Matsuo Yamamoto ◽  
Takashi Yaegashi ◽  
...  

Lactic acid (LA) is short-chain fatty acid, such as butyric acid and propionic acid, that is produced as a metabolite of lactic acid bacteria, including periodontopathic bacteria. These short-chain fatty acids have positive effects on human health but can also have negative effects, such as the promotion of periodontal disease (PD), which is caused by periodontal pathogens present in the gingival sulcus. PD is characterized by apical migration of junctional epithelium, deepening of pockets, and alveolar bone loss. Thus, the junctional epithelial cells that form the bottom of the gingival sulcus are extremely important in investigating the pathophysiology of PD. The aim of this study was to investigate the effect of LA on wound healing, cell growth, cell cycle kinetics, and gene expression of cultured junctional epithelium cells. The results showed that stimulation with 10 mM LA slowed wound healing of the junctional epithelial cell layer and arrested the cell cycle in the G0/G1 (early cell cycle) phase, thereby inhibiting cell growth. However, cell destruction was not observed. LA also enhanced mRNA expression of integrin α5, interleukin (IL)-6, IL-8, intercellular adhesion molecule-1, and receptor activator of nuclear factor kappa-B ligand. The results of this study suggest that stimulation of junctional epithelial cells with high concentrations of LA could exacerbate PD, similarly to butyric acid and propionic acid.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Keisuke Tanaka ◽  
Junichi Tanaka ◽  
Ryo Aizawa ◽  
Mayu Kato-Tanaka ◽  
Hiroo Ueno ◽  
...  

AbstractThe junctional epithelium (JE) is an epithelial component that attaches directly to the tooth surface and performs the unique function of protecting against bacterial infections; its destruction causes inflammation of the periodontal tissue and loss of alveolar bone. A recent study that used the single-color lineage tracing method reported that JE is maintained by its stem cells. However, the process by which individual stem cells form the entire JE around a whole tooth remains unclear. Using a 4-color lineage tracing method, we performed a detailed examination of the dynamics of individual stem cells that constitute the entire JE. The multicolor lineage tracing method showed that single-color areas, which were derived from each cell color, replaced all the constituent JE cells 168 d after the administration of tamoxifen. The horizontal section of the first molar showed that the single-color areas in the JE expanded widely. We detected putative stem cells at the external basal layer farthest from the enamel. In this study, JE cells that were supplied from different stem cells were visualized as individual monochromatic regions, and the JE around the first molar was maintained by several JE-specific stem cells. These findings indicated that the JE consisted of several cell populations that were supplied from their multiple stem cells and could help to explore the mechanisms involved in periodontal tissue homeostasis.


2021 ◽  
Vol 9 (4) ◽  
pp. 44
Author(s):  
Taichi Ishikawa ◽  
Daisuke Sasaki ◽  
Ryo Aizawa ◽  
Yu Shimoyama ◽  
Matsuo Yamamoto ◽  
...  

Purpose: To elucidate the effects of butyric acid (BA), a metabolite of bacteria involved in periodontitis, and a possible enhancer of the junctional epithelial cells. Methods: A murine junctional epithelial cell line, JE-1, was used to assess the effects of sodium butyrate (NaB) as BA. Cell proliferation, migration and attachment were analyzed. Additionally, gene and promoter expression analysis was performed, i.e., cap analysis of gene expression (CAGE) and gene ontology (GO) term enrichment analysis. Results: NaB affected junctional epithelial cell proliferation, migration and attachment. A high concentration of NaB caused cell death and a low concentration tended to promote migration and adhesion. CAGE analysis revealed 75 upregulated and 96 downregulated genes in the cells after 0.2 mM NaB stimulation for 3 h. Regarding GO term enrichment, the genes upregulated >4-fold participated predominantly in cell migration and proliferation. The results of this study suggest that BA produced from periodontopathic bacteria is involved in periodontal tissue destruction at high concentrations. Furthermore, at low concentrations, BA potentially participates in periodontal disease progression by increasing proliferation, migration and attachment of the junctional epithelium and thereby increasing epithelial down-growth.


Author(s):  
Qingsong Jiang ◽  
Yuxi Zhao ◽  
Yusen Shui ◽  
Xuedong Zhou ◽  
Lei Cheng ◽  
...  

Late-onset periodontitis is associated with a series of inflammatory reactions induced by periodontal pathogens, such as Porphyromonas gingivalis, a keystone pathogen involved in periodontitis. Neutrophils are the most abundant leukocytes in the periodontal pocket/gingival crevice and inflamed periodontal tissues. They form a “wall” between the dental plaque and the junctional epithelium, preventing microbial invasion. The balance between neutrophils and the microbial community is essential to periodontal homeostasis. Excessive activation of neutrophils in response to periodontal pathogens can induce tissue damage and lead to periodontitis persistence. Therefore, illuminating the interactions between neutrophils and periodontal pathogens is critical for progress in the field of periodontitis. The present review aimed to summarize the interactions between neutrophils and periodontal pathogens in late-onset periodontitis, including neutrophil recruitment, neutrophil mechanisms to clear the pathogens, and pathogen strategies to evade neutrophil-mediated elimination of bacteria. The recruitment is a multi-step process, including tethering and rolling, adhesion, crawling, and transmigration. Neutrophils clear the pathogens mainly by phagocytosis, respiratory burst responses, degranulation, and neutrophil extracellular trap (NET) formation. The mechanisms that pathogens activate to evade neutrophil-mediated killing include impairing neutrophil recruitment, preventing phagocytosis, uncoupling killing from inflammation, and resistance to ROS, degranulation products, and NETs.


2020 ◽  
Vol 47 (12) ◽  
pp. 1476-1484
Author(s):  
Xue Yuan ◽  
Jinlong Chen ◽  
Lauren A. Van Brunt ◽  
Joseph Grauer ◽  
Quanchen Xu ◽  
...  

Oral Diseases ◽  
2020 ◽  
Author(s):  
Chang Xu ◽  
Aiqin Wang ◽  
Li Zhang ◽  
Chunyan Yang ◽  
Yan Gao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document