scholarly journals Heat Transfer and Pressure Drop Characteristics in Straight Microchannel of Printed Circuit Heat Exchangers

Entropy ◽  
2015 ◽  
Vol 17 (5) ◽  
pp. 3438-3457 ◽  
Author(s):  
Jang-Won Seo ◽  
Yoon-Ho Kim ◽  
Dongseon Kim ◽  
Young-Don Choi ◽  
Kyu-Jung Lee
Author(s):  
Alan Kruizenga ◽  
Mark Anderson ◽  
Roma Fatima ◽  
Michael Corradini ◽  
Aaron Towne ◽  
...  

The increasing importance of improving efficiency and reducing capital costs has lead to significant work studying advanced Brayton cycles for high temperature energy conversion. Using compact, highly efficient, diffusion-bonded heat exchangers for the recuperators, has been a noteworthy improvement in the design of advanced carbon dioxide Brayton Cycles. These heat exchangers will operate near the pseudocritical point of carbon dioxide, making use of the drastic variation of the thermo-physical properties. This paper focuses on the experimental measurements of heat transfer under cooling conditions, as well as pressure drop characteristics within a prototypic printed circuit heat exchanger. Studies utilize type-316 stainless steel, nine channel, semi-circular test section, and supercritical carbon dioxide serves as the working fluid throughout all experiments. The test section channels have a hydraulic diameter of 1.16mm and a length of 0.5m. The mini-channels are fabricated using current chemical etching technology, emulating techniques used in current diffusion bonded printed circuit heat exchanger manufacturing. Local heat transfer values were determined using measured wall temperatures and heat fluxes over a large set of experimental parameters that varied system pressure, inlet temperature, and mass flux. Experimentally determined heat transfer coefficients and pressure drop data are compared to correlations and earlier data available in literature. Modeling predictions using the CFD package FLUENT are included to supplement experimental data. All nine channels were modeled using known inlet conditions and measured wall temperatures as boundary conditions. The FLUENT results show excellent agreement in total power removal for the near pseudocritical region, as well as regions where carbon dioxide is a high or low density fluid.


Author(s):  
Wen Fu ◽  
Xizhen Ma ◽  
Peiyue Li ◽  
Minghui Zhang ◽  
Sheng Li

Printed circuit heat exchangers are considered for use as the intermediate heat exchangers (IHXs) in high temperature gas-cooled reactors (HTGRs), molten salts reactors (MSRs) and other advanced reactors. A printed circuit heat exchanger (PCHE) is a highly integrated plate-type compact heat exchanger with high-temperature, high-pressure applications and high compactness. A PCHE is built based on the technology of chemical etching and diffusion bonding. A PCHE with supercritical carbon dioxide (CO2) as the working fluid was designed in this study based on the theory correlations. Three-dimensional numerical analysis was then conducted to investigate the heat transfer and pressure drop characteristics of supercritical CO2 in the designed printed circuit heat exchanger using commercial CFD code, FLUENT. The distributions of temperature and velocity through the channel were modeled. The influences of Reynolds number on heat transfer and pressure drop were analyzed. The numerical results agree well with the theory calculations.


Author(s):  
Alan Kruizenga ◽  
Mark Anderson ◽  
Roma Fatima ◽  
Michael Corradini ◽  
Aaron Towne ◽  
...  

The increasing importance of improving efficiency and reducing capital costs has led to significant work studying advanced Brayton cycles for high temperature energy conversion. Using compact, highly efficient, diffusion-bonded heat exchangers for the recuperators has been a noteworthy improvement in the design of advanced carbon dioxide Brayton cycles. These heat exchangers will operate near the pseudocritical point of carbon dioxide, making use of the drastic variation of the thermophysical properties. This paper focuses on the experimental measurements of heat transfer under cooling conditions, as well as pressure drop characteristics within a prototypic printed circuit heat exchanger. Studies utilize type-316 stainless steel, nine channel, semi-circular test section, and supercritical carbon dioxide serves as the working fluid throughout all experiments. The test section channels have a hydraulic diameter of 1.16 mm and a length of 0.5 m. The mini-channels are fabricated using current chemical etching technology, emulating techniques used in current diffusion-bonded printed circuit heat exchanger manufacturing. Local heat transfer values were determined using measured wall temperatures and heat fluxes over a large set of experimental parameters that varied system pressure, inlet temperature, and mass flux. Experimentally determined heat transfer coefficients and pressure drop data are compared to correlations and earlier data available in literature. Modeling predictions using the computational fluid dynamics (CFD) package FLUENT are included to supplement experimental data. All nine channels were modeled using known inlet conditions and measured wall temperatures as boundary conditions. The CFD results show excellent agreement in total heat removal for the near pseudocritical region, as well as regions where carbon dioxide is a high or low density fluid.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2069
Author(s):  
Eloy Hontoria ◽  
Alejandro López-Belchí ◽  
Nolberto Munier ◽  
Francisco Vera-García

This paper proposes a methodology aiming at determining the most influent working variables and geometrical parameters over the pressure drop and heat transfer during the condensation process of several refrigerant gases using heat exchangers with pipes mini channels technology. A multi-criteria decision making (MCDM) methodology was used; this MCDM includes a mathematical method called SIMUS (Sequential Interactive Modelling for Urban Systems) that was applied to the results of 2543 tests obtained by using a designed refrigeration rig in which five different refrigerants (R32, R134a, R290, R410A and R1234yf) and two different tube geometries were tested. This methodology allows us to reduce the computational cost compared to the use of neural networks or other model development systems. This research shows six variables out of 39 that better define simultaneously the minimum pressure drop, as well as the maximum heat transfer, saturation pressure fluid entering the condenser being the most important one. Another aim of this research was to highlight a new methodology based on operation research for their application to improve the heat transfer energy efficiency and reduce the CO2 footprint derived of the use of heat exchangers with minichannels.


Sign in / Sign up

Export Citation Format

Share Document