scholarly journals A New Hyperchaotic System-Based Design for Efficient Bijective Substitution-Boxes

Entropy ◽  
2018 ◽  
Vol 20 (7) ◽  
pp. 525 ◽  
Author(s):  
Eesa Al Solami ◽  
Musheer Ahmad ◽  
Christos Volos ◽  
Mohammad Doja ◽  
Mirza Beg

In this paper, we present a novel method to construct cryptographically strong bijective substitution-boxes based on the complicated dynamics of a new hyperchaotic system. The new hyperchaotic system was found to have good characteristics when compared with other systems utilized for S-box construction. The performance assessment of the proposed S-box method was carried out based on criteria, such as high nonlinearity, a good avalanche effect, bit-independent criteria, and low differential uniformity. The proposed method was also analyzed for the batch-generation of 8 × 8 S-boxes. The analyses found that through a proposed purely chaos-based method, an 8 × 8 S-box with a maximum average high nonlinearity of 108.5, or S-boxes with differential uniformity as low as 8, can be retrieved. Moreover, small-sized S-boxes with high nonlinearity and low differential uniformity are also obtainable. A performance comparison of the anticipated method with recent S-box proposals proved its dominance and effectiveness for a strong bijective S-box construction.

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Yue Leng ◽  
Jinyang Chen ◽  
Tao Xie

Permutations with low differential uniformity, high algebraic degree, and high nonlinearity over F22k can be used as the substitution boxes for many block ciphers. In this paper, several classes of low differential uniformity permutations are constructed based on the method of choosing two permutations over F22k to get the desired permutations. The resulted low differential uniformity permutations have high algebraic degrees and nonlinearities simultaneously, which provide more choices for the substitution boxes. Moreover, some numerical examples are provided to show the efficacy of the theoretical results.


Entropy ◽  
2020 ◽  
Vol 22 (7) ◽  
pp. 717 ◽  
Author(s):  
Musheer Ahmad ◽  
Eesa Al-Solami

Static substitution-boxes in fixed structured block ciphers may make the system vulnerable to cryptanalysis. However, key-dependent dynamic substitution-boxes (S-boxes) assume to improve the security and robustness of the whole cryptosystem. This paper proposes to present the construction of key-dependent dynamic S-boxes having high nonlinearity. The proposed scheme involves the evolution of initially generated S-box for improved nonlinearity based on the fractional-order time-delayed Hopfield neural network. The cryptographic performance of the evolved S-box is assessed by using standard security parameters, including nonlinearity, strict avalanche criterion, bits independence criterion, differential uniformity, linear approximation probability, etc. The proposed scheme is able to evolve an S-box having mean nonlinearity of 111.25, strict avalanche criteria value of 0.5007, and differential uniformity of 10. The performance assessments demonstrate that the proposed scheme and S-box have excellent features, and are thus capable of offering high nonlinearity in the cryptosystem. The comparison analysis further confirms the improved security features of anticipated scheme and S-box, as compared to many existing chaos-based and other S-boxes.


Symmetry ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 437 ◽  
Author(s):  
Amjad Zahid ◽  
Muhammad Arshad

In this paper, we propose to present a novel technique for designing cryptographically strong substitution-boxes using cubic polynomial mapping. The proposed cubic polynomial mapping is proficient to map the input sequence to a strong 8 × 8 S-box meeting the requirements of a bijective function. The use of cubic polynomial maintains the simplicity of S-box construction method and found consistent when compared with other existing S-box techniques used to construct S-boxes. An example proposed S-box is obtained which is analytically evaluated using standard performance criteria including nonlinearity, bijection, bit independence, strict avalanche effect, linear approximation probability, and differential uniformity. The performance results are equated with some recently scrutinized S-boxes to ascertain its cryptographic forte. The critical analyses endorse that the proposed S-box construction technique is considerably innovative and effective to generate cryptographic strong substitution-boxes.


2008 ◽  
Vol 372 (2) ◽  
pp. 124-136 ◽  
Author(s):  
Guoyuan Qi ◽  
Michaël Antonie van Wyk ◽  
Barend Jacobus van Wyk ◽  
Guanrong Chen

2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Xiang Li ◽  
Ranchao Wu

A new 4D hyperchaotic system is constructed based on the Lorenz system. The compound structure and forming mechanism of the new hyperchaotic attractor are studied via a controlled system with constant controllers. Furthermore, it is found that the Hopf bifurcation occurs in this hyperchaotic system when the bifurcation parameter exceeds a critical value. The direction of the Hopf bifurcation as well as the stability of bifurcating periodic solutions is presented in detail by virtue of the normal form theory. Numerical simulations are given to illustrate and verify the results.


2009 ◽  
Vol 58 (7) ◽  
pp. 4457
Author(s):  
Liu Ming-Hua ◽  
Feng Jiu-Chao

Sign in / Sign up

Export Citation Format

Share Document