scholarly journals The Radial Propagation of Heat in Strongly Driven Non-Equilibrium Fusion Plasmas

Entropy ◽  
2019 ◽  
Vol 21 (2) ◽  
pp. 148 ◽  
Author(s):  
Boudewijn van Milligen ◽  
Benjamin Carreras ◽  
Luis García ◽  
Javier Nicolau

Heat transport is studied in strongly heated fusion plasmas, far from thermodynamic equilibrium. The radial propagation of perturbations is studied using a technique based on the transfer entropy. Three different magnetic confinement devices are studied, and similar results are obtained. “Minor transport barriers” are detected that tend to form near rational magnetic surfaces, thought to be associated with zonal flows. Occasionally, heat transport “jumps” over these barriers, and this “jumping” behavior seems to increase in intensity when the heating power is raised, suggesting an explanation for the ubiquitous phenomenon of “power degradation” observed in magnetically confined plasmas. Reinterpreting the analysis results in terms of a continuous time random walk, “fast” and “slow” transport channels can be discerned. The cited results can partially be understood in the framework of a resistive Magneto-HydroDynamic model. The picture that emerges shows that plasma self-organization and competing transport mechanisms are essential ingredients for a fuller understanding of heat transport in fusion plasmas.

2017 ◽  
Vol 83 (5) ◽  
Author(s):  
S. L. Newton ◽  
P. Helander ◽  
A. Mollén ◽  
H. M. Smith

The accumulation of impurities in the core of magnetically confined plasmas, resulting from standard collisional transport mechanisms, is a known threat to their performance as fusion energy sources. Whilst the axisymmetric tokamak systems have been shown to benefit from the effect of temperature screening, that is an outward flux of impurities driven by the temperature gradient, impurity accumulation in stellarators was thought to be inevitable, driven robustly by the inward pointing electric field characteristic of hot fusion plasmas. We have shown in Helander et al. (Phys. Rev. Lett., vol. 118, 2017a, 155002) that such screening can in principle also appear in stellarators, in the experimentally relevant mixed collisionality regime, where a highly collisional impurity species is present in a low collisionality bulk plasma. Details of the analytic calculation are presented here, along with the effect of the impurity on the bulk ion flow, which will ultimately affect the bulk contribution to the bootstrap current.


2012 ◽  
Vol 54 (12) ◽  
pp. 124035 ◽  
Author(s):  
I L Caldas ◽  
R L Viana ◽  
C V Abud ◽  
J C D Fonseca ◽  
Z O Guimarães Filho ◽  
...  

2021 ◽  
Vol 87 (2) ◽  
Author(s):  
Timo P. Kiviniemi ◽  
Eero Hirvijoki ◽  
Antti J. Virtanen

Ideally, binary-collision algorithms conserve kinetic momentum and energy. In practice, the finite size of collision cells and the finite difference in the particle locations affect the conservation properties. In the present work, we investigate numerically how the accuracy of these algorithms is affected when the size of collision cells is large compared with gradient scale length of the background plasma, a parameter essential in full- $f$ fusion plasma simulations. Additionally, we discuss implications for the conserved quantities in drift-kinetic formulations when fluctuating magnetic and electric fields are present: we suggest how the accuracy of the algorithms could potentially be improved with minor modifications.


2000 ◽  
Vol 61 (3) ◽  
pp. 3042-3052 ◽  
Author(s):  
M. May ◽  
K. Fournier ◽  
D. Pacella ◽  
H. Kroegler ◽  
J. Rice ◽  
...  

2016 ◽  
Vol 198 ◽  
pp. 139-153 ◽  
Author(s):  
Andreas Stegmeir ◽  
David Coster ◽  
Omar Maj ◽  
Klaus Hallatschek ◽  
Karl Lackner

2014 ◽  
Vol 21 (10) ◽  
pp. 102304 ◽  
Author(s):  
B. Nold ◽  
P. Manz ◽  
T. T. Ribeiro ◽  
G. Fuchert ◽  
G. Birkenmeier ◽  
...  

2017 ◽  
Vol 941 ◽  
pp. 012008
Author(s):  
A B Kukushkin ◽  
A A Kulichenko ◽  
P A Sdvizhenskii ◽  
A V Sokolov ◽  
V V Voloshinov

Sign in / Sign up

Export Citation Format

Share Document