scholarly journals On the accuracy of the binary-collision algorithm in particle-in-cell simulations of magnetically confined fusion plasmas

2021 ◽  
Vol 87 (2) ◽  
Author(s):  
Timo P. Kiviniemi ◽  
Eero Hirvijoki ◽  
Antti J. Virtanen

Ideally, binary-collision algorithms conserve kinetic momentum and energy. In practice, the finite size of collision cells and the finite difference in the particle locations affect the conservation properties. In the present work, we investigate numerically how the accuracy of these algorithms is affected when the size of collision cells is large compared with gradient scale length of the background plasma, a parameter essential in full- $f$ fusion plasma simulations. Additionally, we discuss implications for the conserved quantities in drift-kinetic formulations when fluctuating magnetic and electric fields are present: we suggest how the accuracy of the algorithms could potentially be improved with minor modifications.

2000 ◽  
Vol 61 (3) ◽  
pp. 3042-3052 ◽  
Author(s):  
M. May ◽  
K. Fournier ◽  
D. Pacella ◽  
H. Kroegler ◽  
J. Rice ◽  
...  

Geophysics ◽  
2004 ◽  
Vol 69 (5) ◽  
pp. 1192-1202 ◽  
Author(s):  
Michael Commer ◽  
Gregory Newman

A parallel finite‐difference algorithm for the solution of diffusive, three‐dimensional (3D) transient electromagnetic field simulations is presented. The purpose of the scheme is the simulation of both electric fields and the time derivative of magnetic fields generated by galvanic sources (grounded wires) over arbitrarily complicated distributions of conductivity and magnetic permeability. Using a staggered grid and a modified DuFort‐Frankel method, the scheme steps Maxwell's equations in time. Electric field initialization is done by a conjugate‐gradient solution of a 3D Poisson problem, as is common in 3D resistivity modeling. Instead of calculating the initial magnetic field directly, its time derivative and curl are employed in order to advance the electric field in time. A divergence‐free condition is enforced for both the magnetic‐field time derivative and the total conduction‐current density, providing accurate results at late times. In order to simulate large realistic earth models, the algorithm has been designed to run on parallel computer platforms. The upward continuation boundary condition for a stable solution in the infinitely resistive air layer involves a two‐dimensional parallel fast Fourier transform. Example simulations are compared with analytical, integral‐equation and spectral Lanczos decomposition solutions and demonstrate the accuracy of the scheme.


Three methods of integrating nonlinear hyperbolic equations are considered, namely the characteristic, mesh finite-difference and particle-in-cell techniques. In particular, a practical characteristic code for problems with large numbers of discontinuities is described, and developments in the use of artificial viscosity terms are outlined. The incorporation of certain particle-in-cell features into Eulerian mesh methods is also illustrated.


Sign in / Sign up

Export Citation Format

Share Document