scholarly journals Performance of a simple energetic-converting reaction model using Linear Irreversible Thermodynamics

Entropy ◽  
2019 ◽  
Vol 21 (11) ◽  
pp. 1030 ◽  
Author(s):  
J. Chimal-Eguia ◽  
R. Paez-Hernandez ◽  
Delfino Ladino-Luna ◽  
Juan Velázquez-Arcos

In this paper, the methodology of the so-called Linear Irreversible Thermodynamics (LIT) is applied to analyze the properties of an energetic-converting biological process using simple model for an enzymatic reaction that couples one exothermic and one endothermic reaction in the same fashion as Diaz-Hernandez et al. (Physica A, 2010, 389, 3476–3483). We extend the former analysis to consider three different operating regimes; namely, Maximum Power Output (MPO), Maximum Ecological Function (MEF) and Maximum Efficient Power Function (MEPF), respectively. Based on the later, it is possible to generalize the obtained results. Additionally, results show analogies in the optimal performance between the different optimization criteria where all thermodynamic features are determined by three parameters (the chemical potential gap Δ = μ 1 − μ 4 R T , the degree of coupling q and the efficiency η ). This depends on the election that leads to more or less efficient energy exchange.

Author(s):  
I-Shih Liu

A brief overview of the development from classical linear irreversible thermodynamics to the modern rational thermodynamics with Coleman–Noll and Müller–Liu procedures is presented, emphasizing the basic assumptions and formulation details. The major arguments concerned are the improvement of physical assumptions and mathematical formulation differences. Extended thermodynamics is also briefly commented.


1983 ◽  
Vol 73 (3) ◽  
pp. 749-763
Author(s):  
Maurice A. Biot

abstract Rigidity matrices for multi-layered media are derived for isotropic and orthotropic layers by a simple direct procedure which brings to light their fundamental mathematical structure. The method was introduced many years ago by the author in the more general context of dynamics and stability of multi-layers under initial stress. Other earlier results are also briefly recalled such as the derivation of three-dimensional solutions from plane strain modes, the effect of initial stresses, gravity, and couple stresses for thinly laminated layers. The extension of the same mathematical structure and symmetry to viscoelastic media is valid as a consequence of fundamental principles in linear irreversible thermodynamics.


2021 ◽  
pp. 26-26
Author(s):  
Ling Lin ◽  
Yun Qiao

Fractal modifications of Fick?s laws are discussed by taking into account the electrode?s porous structure, and a fractal derivative model for diffusion-reaction process in a thin film of an amperometric enzymatic reaction is established. Particular attention is paid to giving an intuitive grasp for its fractal variational principle and its solution procedure. Extremely fast or extremely slow diffusion process can be achieved by suitable control of the electrode?s surface morphology, a sponge-like surface leads to an extremely fast diffusion, while a lotus-leaf-like uneven surface predicts an extremely slow process. This paper sheds a bright light on an optimal design of an electrode?s surface morphology.


2011 ◽  
Vol 89 (10) ◽  
pp. 1041-1050 ◽  
Author(s):  
Matthew R. Sears ◽  
Wayne M. Saslow

With spintronics applications in mind, we use irreversible thermodynamics to derive the rates of entropy production and heating near an interface when heat current, electric current, and spin current cross it. Associated with these currents are apparent discontinuities in temperature (ΔT), electrochemical potential (Δ[Formula: see text]), and spin-dependent “magnetoelectrochemical potential” (Δ[Formula: see text]). This work applies to magnetic semiconductors and insulators as well as metals, because of the inclusion of the chemical potential, μ, which is usually neglected in works on interfacial thermodynamic transport. We also discuss the (nonobvious) distinction between entropy production and heat production. Heat current and electric current are conserved, but spin current is not, so it necessitates a somewhat different treatment. At low temperatures or for large differences in material properties, the surface heating rate dominates the bulk heating rate near the surface. We also consider the case where bulk spin currents occur in equilibrium. Although a surface spin current (in A/m2) should yield about the same rate of heating as an equal surface electric current, production of such a spin current requires a relatively large “magnetization potential” difference across the interface.


2010 ◽  
Vol 389 (17) ◽  
pp. 3476-3483 ◽  
Author(s):  
Orlando Díaz-Hernández ◽  
Ricardo Páez-Hernández ◽  
Moisés Santillán

Author(s):  
Qiao Chen ◽  
Jingyun Weng ◽  
Gabriele Sadowski ◽  
Yuanhui Ji

The influence of temperature, stirring speed, and excipients on crystal growth kinetics of mesalazine and allopurinol was investigated through experiment and chemical potential gradient model. The results indicated that the Diffusion-Surface Reaction model (DSR (1,2)) showed good performance in modeling API crystal growth kinetics within the ARDs of 4%. Excipients played a crucial role in inhibiting crystal growth in all the systems. It can not only improve the API solubility, but also reduce the crystal growth rate. By comparing diffusion rate and surface-reaction rate constant within the DSR (1,2) model, it was found that the controlling step of mesalazine crystallization was surface-reaction. Allopurinol crystallization was dominated by both surface-reaction and diffusion. Meanwhile, the crystal growth kinetics of mesalazine and allopurinol were predicted successfully with the ARDs of 2.53% and 4.78%. This work provided a mechanistic understanding of polymer influence on the inhibition of API crystal growth.


Sign in / Sign up

Export Citation Format

Share Document