scholarly journals Ranking Power Spectra: A Proof of Concept

Entropy ◽  
2019 ◽  
Vol 21 (11) ◽  
pp. 1057
Author(s):  
Xilin Yu ◽  
Zhenning Mei ◽  
Chen Chen ◽  
Wei Chen

To characterize the irregularity of the spectrum of a signal, spectral entropy and its variants are widely adopted measures. However, spectral entropy is invariant under the permutation of the power spectrum estimations on a predefined grid. This erases the inherent order structure in the spectrum. To disentangle the order structure and extract meaningful information from raw digital signal, a novel analysis method is necessary. In this paper, we tried to unfold this order structure by defining descriptors mapping real- and vector-valued power spectrum estimation of a signal into a scalar value. The proposed descriptors showed its potential in diverse problems. Significant differences were observed from brain signals and surface electromyography of different pathological/physiological states. Drastic change accompanied by the alteration of the underlying process of signals enables it as a candidate feature for seizure detection and endpoint detection in speech signal. Since the order structure in the spectrum of physiological signal carries previously ignored information, which cannot be properly extracted by existing techniques, this paper takes one step forward along this direction by proposing computationally efficient descriptors with guaranteed information gain. To the best of our knowledge, this is the first work revealing the effectiveness of the order structure in the spectrum in physiological signal processing.

Author(s):  
P. Fraundorf ◽  
B. Armbruster

Optical interferometry, confocal light microscopy, stereopair scanning electron microscopy, scanning tunneling microscopy, and scanning force microscopy, can produce topographic images of surfaces on size scales reaching from centimeters to Angstroms. Second moment (height variance) statistics of surface topography can be very helpful in quantifying “visually suggested” differences from one surface to the next. The two most common methods for displaying this information are the Fourier power spectrum and its direct space transform, the autocorrelation function or interferogram. Unfortunately, for a surface exhibiting lateral structure over several orders of magnitude in size, both the power spectrum and the autocorrelation function will find most of the information they contain pressed into the plot’s origin. This suggests that we plot power in units of LOG(frequency)≡-LOG(period), but rather than add this logarithmic constraint as another element of abstraction to the analysis of power spectra, we further recommend a shift in paradigm.


2019 ◽  
Vol 13 (2) ◽  
pp. 174-180
Author(s):  
Poonam Sharma ◽  
Ashwani Kumar Dubey ◽  
Ayush Goyal

Background: With the growing demand of image processing and the use of Digital Signal Processors (DSP), the efficiency of the Multipliers and Accumulators has become a bottleneck to get through. We revised a few patents on an Application Specific Instruction Set Processor (ASIP), where the design considerations are proposed for application-specific computing in an efficient way to enhance the throughput. Objective: The study aims to develop and analyze a computationally efficient method to optimize the speed performance of MAC. Methods: The work presented here proposes the design of an Application Specific Instruction Set Processor, exploiting a Multiplier Accumulator integrated as the dedicated hardware. This MAC is optimized for high-speed performance and is the application-specific part of the processor; here it can be the DSP block of an image processor while a 16-bit Reduced Instruction Set Computer (RISC) processor core gives the flexibility to the design for any computing. The design was emulated on a Xilinx Field Programmable Gate Array (FPGA) and tested for various real-time computing. Results: The synthesis of the hardware logic on FPGA tools gave the operating frequencies of the legacy methods and the proposed method, the simulation of the logic verified the functionality. Conclusion: With the proposed method, a significant improvement of 16% increase in throughput has been observed for 256 steps iterations of multiplier and accumulators on an 8-bit sample data. Such an improvement can help in reducing the computation time in many digital signal processing applications where multiplication and addition are done iteratively.


2021 ◽  
Vol 503 (4) ◽  
pp. 5638-5645
Author(s):  
Gábor Rácz ◽  
István Szapudi ◽  
István Csabai ◽  
László Dobos

ABSTRACT The classical gravitational force on a torus is anisotropic and always lower than Newton’s 1/r2 law. We demonstrate the effects of periodicity in dark matter only N-body simulations of spherical collapse and standard Lambda cold dark matter (ΛCDM) initial conditions. Periodic boundary conditions cause an overall negative and anisotropic bias in cosmological simulations of cosmic structure formation. The lower amplitude of power spectra of small periodic simulations is a consequence of the missing large-scale modes and the equally important smaller periodic forces. The effect is most significant when the largest mildly non-linear scales are comparable to the linear size of the simulation box, as often is the case for high-resolution hydrodynamical simulations. Spherical collapse morphs into a shape similar to an octahedron. The anisotropic growth distorts the large-scale ΛCDM dark matter structures. We introduce the direction-dependent power spectrum invariant under the octahedral group of the simulation volume and show that the results break spherical symmetry.


Author(s):  
Srijita Pal ◽  
Somnath Bharadwaj ◽  
Abhik Ghosh ◽  
Samir Choudhuri

Abstract We apply the Tapered Gridded Estimator (TGE) for estimating the cosmological 21-cm power spectrum from 150 MHz GMRT observations which corresponds to the neutral hydrogen (HI) at redshift z = 8.28. Here TGE is used to measure the Multi-frequency Angular Power Spectrum (MAPS) Cℓ(Δν) first, from which we estimate the 21-cm power spectrum P(k⊥, k∥). The data here are much too small for a detection, and the aim is to demonstrate the capabilities of the estimator. We find that the estimated power spectrum is consistent with the expected foreground and noise behaviour. This demonstrates that this estimator correctly estimates the noise bias and subtracts this out to yield an unbiased estimate of the power spectrum. More than $47\%$ of the frequency channels had to be discarded from the data owing to radio-frequency interference, however the estimated power spectrum does not show any artifacts due to missing channels. Finally, we show that it is possible to suppress the foreground contribution by tapering the sky response at large angular separations from the phase center. We combine the k modes within a rectangular region in the ‘EoR window’ to obtain the spherically binned averaged dimensionless power spectra Δ2(k) along with the statistical error σ associated with the measured Δ2(k). The lowest k-bin yields Δ2(k) = (61.47)2 K2 at k = 1.59 Mpc−1, with σ = (27.40)2 K2. We obtain a 2 σ upper limit of (72.66)2 K2 on the mean squared HI 21-cm brightness temperature fluctuations at k = 1.59 Mpc−1.


Author(s):  
Robin E Upham ◽  
Michael L Brown ◽  
Lee Whittaker

Abstract We investigate whether a Gaussian likelihood is sufficient to obtain accurate parameter constraints from a Euclid-like combined tomographic power spectrum analysis of weak lensing, galaxy clustering and their cross-correlation. Testing its performance on the full sky against the Wishart distribution, which is the exact likelihood under the assumption of Gaussian fields, we find that the Gaussian likelihood returns accurate parameter constraints. This accuracy is robust to the choices made in the likelihood analysis, including the choice of fiducial cosmology, the range of scales included, and the random noise level. We extend our results to the cut sky by evaluating the additional non-Gaussianity of the joint cut-sky likelihood in both its marginal distributions and dependence structure. We find that the cut-sky likelihood is more non-Gaussian than the full-sky likelihood, but at a level insufficient to introduce significant inaccuracy into parameter constraints obtained using the Gaussian likelihood. Our results should not be affected by the assumption of Gaussian fields, as this approximation only becomes inaccurate on small scales, which in turn corresponds to the limit in which any non-Gaussianity of the likelihood becomes negligible. We nevertheless compare against N-body weak lensing simulations and find no evidence of significant additional non-Gaussianity in the likelihood. Our results indicate that a Gaussian likelihood will be sufficient for robust parameter constraints with power spectra from Stage IV weak lensing surveys.


Sign in / Sign up

Export Citation Format

Share Document