scholarly journals PCA-Based Matrix CFAR Detection for Radar Target

Entropy ◽  
2020 ◽  
Vol 22 (7) ◽  
pp. 756
Author(s):  
Zheng Yang ◽  
Yongqiang Cheng ◽  
Hao Wu

In radar target detection, constant false alarm rate (CFAR), which stands for the adaptive threshold adjustment with variation of clutter to maintain the constant probability of false alarm during the detection, plays an important role. Matrix CFAR detection performed on the manifold of Hermitian positive-definite (HPD) covariance matrices is an efficient detection method that is based on information geometry. However, the HPD covariance matrix, which is constructed by a small bunch of pulses, describes the correlations among received data and suffers from severe information redundancy that limits the improvement of detection performance. This paper proposes a Principal Component Analysis (PCA) based matrix CFAR detection method for dealing with the point target detection problems in clutter. The proposed method can not only reduce dimensionality of HPD covariance matrix, but also reduce the redundant information and enhance the distinguishability between target and clutter. We first apply PCA to the cell under test, and construct a transformation matrix to map higher-dimensional matrix space to a lower-dimensional matrix space. Subsequently, the corresponding detection statistics and detection decision on matrix manifold are derived. Meanwhile, the corresponding signal-to-clutter ratio (SCR) is improved. Finally, the simulation experiment and real sea clutter data experiment show that the proposed method can achieve a better detection performance.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Sungho Kim ◽  
Kyung-Tae Kim

Small target detection is very important for infrared search and track (IRST) problems. Grouped targets are difficult to detect using the conventional constant false alarm rate (CFAR) detection method. In this study, a novel multitarget detection method was developed to identify adjacent or closely spaced small infrared targets. The neighboring targets decrease the signal-to-clutter ratio in hysteresis threshold-based constant false alarm rate (H-CFAR) detection, which leads to poor detection performance in cluttered environments. The proposed adjacent target rejection-based robust background estimation can reduce the effects of the neighboring targets and enhance the small multitarget detection performance in infrared images by increasing the signal-to-clutter ratio. The experimental results of the synthetic and real adjacent target sequences showed that the proposed method produces an upgraded detection rate with the same false alarm rate compared to the recent target detection methods (H-CFAR, Top-hat, and TDLMS).



2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Siva Karteek Bolisetti ◽  
Mohammad Patwary ◽  
Khawza Ahmed ◽  
Abdel-Hamid Soliman ◽  
Mohamed Abdel-Maguid

The problem of optimising the target detection performance of MIMO radar in the presence of clutter is considered. The increased false alarm rate which is a consequence of the presence of clutter returns is known to seriously degrade the target detection performance of the radar target detector, especially under low SNR conditions. In this paper, a mathematical model is proposed to optimise the target detection performance of a MIMO radar detector in the presence of clutter. The number of samples that are required to be processed by a radar target detector regulates the amount of processing burden while achieving a given detection reliability. While Subspace Compressive GLRT (SSC-GLRT) detector is known to give optimised radar target detection performance with reduced computational complexity, it however suffers a significant deterioration in target detection performance in the presence of clutter. In this paper we provide evidence that the proposed mathematical model for SSC-GLRT detector outperforms the existing detectors in the presence of clutter. The performance analysis of the existing detectors and the proposed SSC-GLRT detector for MIMO radar in the presence of clutter are provided in this paper.



2021 ◽  
Vol 13 (9) ◽  
pp. 1703
Author(s):  
He Yan ◽  
Chao Chen ◽  
Guodong Jin ◽  
Jindong Zhang ◽  
Xudong Wang ◽  
...  

The traditional method of constant false-alarm rate detection is based on the assumption of an echo statistical model. The target recognition accuracy rate and the high false-alarm rate under the background of sea clutter and other interferences are very low. Therefore, computer vision technology is widely discussed to improve the detection performance. However, the majority of studies have focused on the synthetic aperture radar because of its high resolution. For the defense radar, the detection performance is not satisfactory because of its low resolution. To this end, we herein propose a novel target detection method for the coastal defense radar based on faster region-based convolutional neural network (Faster R-CNN). The main processing steps are as follows: (1) the Faster R-CNN is selected as the sea-surface target detector because of its high target detection accuracy; (2) a modified Faster R-CNN based on the characteristics of sparsity and small target size in the data set is employed; and (3) soft non-maximum suppression is exploited to eliminate the possible overlapped detection boxes. Furthermore, detailed comparative experiments based on a real data set of coastal defense radar are performed. The mean average precision of the proposed method is improved by 10.86% compared with that of the original Faster R-CNN.



2019 ◽  
Vol 2019 (19) ◽  
pp. 5597-5601 ◽  
Author(s):  
Wenjing Zhao ◽  
Deyue Zou ◽  
Wenlong Liu ◽  
Minglu Jin


Author(s):  
L. Zhongwei ◽  
G. Hongwei ◽  
L. Yingchun ◽  
X. Rongrong ◽  
S. Shuyan ◽  
...  


2019 ◽  
Vol 13 (5) ◽  
pp. 730-739 ◽  
Author(s):  
Gang Xiong ◽  
Caiping Xi ◽  
Jin He ◽  
Wenxian Yu


Sign in / Sign up

Export Citation Format

Share Document