scholarly journals Effect of Self-Oscillation on Escape Dynamics of Classical and Quantum Open Systems

Entropy ◽  
2020 ◽  
Vol 22 (8) ◽  
pp. 839
Author(s):  
Minggen Li ◽  
Jingdong Bao

We study the effect of self-oscillation on the escape dynamics of classical and quantum open systems by employing the system-plus-environment-plus-interaction model. For a damped free particle (system) with memory kernel function expressed by Zwanzig (J. Stat. Phys. 9, 215 (1973)), which is originated from a harmonic oscillator bath (environment) of Debye type with cut-off frequency wd, ergodicity breakdown is found because the velocity autocorrelation function oscillates in cosine function for asymptotic time. The steady escape rate of such a self-oscillated system from a metastable potential exhibits nonmonotonic dependence on wd, which denotes that there is an optimal cut-off frequency makes it maximal. Comparing results in classical and quantum regimes, the steady escape rate of a quantum open system reduces to a classical one with wd decreasing gradually, and quantum fluctuation indeed enhances the steady escape rate. The effect of a finite number of uncoupled harmonic oscillators N on the escape dynamics of a classical open system is also discussed.

2005 ◽  
Vol 20 (22) ◽  
pp. 1635-1654 ◽  
Author(s):  
ANGELO CAROLLO

The quantum jump method for the calculation of geometric phase is reviewed. This is an operational method to associate a geometric phase to the evolution of a quantum system subjected to decoherence in an open system. The method is general and can be applied to many different physical systems, within the Markovian approximation. As examples, two main source of decoherence are considered: dephasing and spontaneous decay. It is shown that the geometric phase is to very large extent insensitive to the former, i.e. it is independent of the number of jumps determined by the dephasing operator.


1997 ◽  
Vol 55 (10) ◽  
pp. 5917-5935 ◽  
Author(s):  
Don Koks ◽  
Andrew Matacz ◽  
B. L. Hu

1983 ◽  
Vol 61 (11) ◽  
pp. 1479-1485 ◽  
Author(s):  
I. D. Cox ◽  
W. E. Hagston ◽  
B. J. Holmes

Damping theory of an open system S is usually formulated in terms of projection operators which introduce nonuniqueness into the analysis. An insight into the nature of the approximations that arise from this aspect of the formalism is revealed by considering systems of varying complexity. This leads to the conclusion that the results of higher order perturbation theory approximations may not be meaningful.


Author(s):  
Esteban A. Calzetta ◽  
Bei-Lok B. Hu

2019 ◽  
Vol 99 (3) ◽  
Author(s):  
G. P. Martins ◽  
N. K. Bernardes ◽  
M. F. Santos

2020 ◽  
pp. 1-50
Author(s):  
MARK F. DEMERS ◽  
MIKE TODD

We consider multimodal maps with holes and study the evolution of the open systems with respect to equilibrium states for both geometric and Hölder potentials. For small holes, we show that a large class of initial distributions share the same escape rate and converge to a unique absolutely continuous conditionally invariant measure; we also prove a variational principle connecting the escape rate to the pressure on the survivor set, with no conditions on the placement of the hole. Finally, introducing a weak condition on the centre of the hole, we prove scaling limits for the escape rate for holes centred at both periodic and non-periodic points, as the diameter of the hole goes to zero.


Sign in / Sign up

Export Citation Format

Share Document