scholarly journals Approaching Bounded Rationality: From Quantum Probability to Criticality

Entropy ◽  
2021 ◽  
Vol 23 (6) ◽  
pp. 745
Author(s):  
Lucio Tonello ◽  
Paolo Grigolini

The bounded rationality mainstream is based on interesting experiments showing human behaviors violating classical probability (CP) laws. Quantum probability (QP) has been shown to successfully figure out such issues, supporting the hypothesis that quantum mechanics is the central fundamental pillar for brain function and cognition emergence. We discuss the decision-making model (DMM), a paradigmatic instance of criticality, which deals with bounded rationality issues in a similar way as QP, generating choices that cannot be accounted by CP. We define this approach as criticality-induced bounded rationality (CIBR). For some aspects, CIBR is even more satisfactory than QP. Our work may contribute to considering criticality as another possible fundamental pillar in order to improve the understanding of cognition and of quantum mechanics as well.

2021 ◽  
Author(s):  
Tim C Jenkins

Abstract Superposed wavefunctions in quantum mechanics lead to a squared amplitude that introduces interference into a probability density, which has long been a puzzle because interference between probability densities exists nowhere else in probability theory. In recent years Man’ko and co-authors have successfully reconciled quantum and classical probability using a symplectic tomographic model. Nevertheless, there remains an unexplained coincidence in quantum mechanics, namely that mathematically the interference term in the squared amplitude of superposed wavefunctions has the form of a variance of a sum of correlated random variables and we examine whether there could be an archetypical variable behind quantum probability that provides a mathematical foundation that observes both quantum and classical probability directly. The properties that would need to be satisfied for this to be the case are identified, and a generic variable that satisfies them is found that would be present everywhere, transforming into a process-specific variable wherever a quantum process is active. This hidden generic variable appears to be such an archetype.


Author(s):  
Guido Bacciagaluppi

The topic of probability in quantum mechanics is rather vast. In this chapter it is discussed from the perspective of whether and in what sense quantum mechanics requires a generalization of the usual (Kolmogorovian) concept of probability. The focus is on the case of finite-dimensional quantum mechanics (which is analogous to that of discrete probability spaces), partly for simplicity and partly for ease of generalization. While the main emphasis is on formal aspects of quantum probability (in particular the non-existence of joint distributions for incompatible observables), the discussion relates also to notorious issues in the interpretation of quantum mechanics. Indeed, whether quantum probability can or cannot be ultimately reduced to classical probability connects rather nicely to the question of 'hidden variables' in quantum mechanics.


Author(s):  
Andrei Khrennikov

We discuss the subjective probability interpretation of the quantum-like approach to decision making and more generally to cognition. Our aim is to adopt the subjective probability interpretation of quantum mechanics, quantum Bayesianism (QBism), to serve quantum-like modelling and applications of quantum probability outside of physics. We analyse the classical and quantum probabilistic schemes of probability update, learning and decision-making and emphasize the role of Jeffrey conditioning and its quantum generalizations. Classically, this type of conditioning and corresponding probability update is based on the formula of total probability—one the basic laws of classical probability theory.


Author(s):  
Jerome R. Busemeyer ◽  
Zheng Wang ◽  
Emmanuel Pothos

Quantum probability theory provides a new formalism for constructing probabilistic and dynamic systems of cognition and decision. The purpose of this chapter is to introduce psychologists to this fascinating theory. This chapter is organized into six sections. First, some of the basic psychological principles supporting a quantum approach to cognition and decision are summarized; second, some notations and definitions needed to understand quantum probability theory are presented; third, a comparison of quantum and classical probability theories is presented; fourth, quantum probability theory is used to account for some paradoxical findings in the field of human probability judgments; fifth, a comparison of quantum and Markov dynamic theories is presented; and finally, a quantum dynamic model is used to account for some puzzling findings of decision-making research. The chapter concludes with a summary of advantages and disadvantages of a quantum probability theoretical framework for modeling cognition and decision.


Author(s):  
Louis Narens

Classical probability theory, as axiomatized in 1933 by Andrey Kolmogorov, has provided a useful and almost universally accepted theory for describing and quantifying uncertainty in scientific applications outside quantum mechanics. Recently, cognitive psychologists and mathematical economists have provided examples where classical probability theory appears inadequate but the probability theory underlying quantum mechanics appears effective. Formally, quantum probability theory is a generalization of classical probability. This article explores relationships between generalized probability theories, in particular quantum-like probability theories and those that do not have full complementation operators (e.g. event spaces based on intuitionistic logic), and discusses how these generalizations bear on important issues in the foundations of probability and the development of non-classical probability theories for the behavioural sciences.


Author(s):  
Miguel Ángel Lozada Aguilar ◽  
Andrei Khrennikov ◽  
Klaudia Oleschko ◽  
María de Jesús Correa

The paper starts with a brief review of the literature about uncertainty in geological, geophysical and petrophysical data. In particular, we present the viewpoints of experts in geophysics on the application of Bayesian inference and subjective probability. Then we present arguments that the use of classical probability theory (CP) does not match completely the structure of geophysical data. We emphasize that such data are characterized by contextuality and non-Kolmogorovness (the impossibility to use the CP model), incompleteness as well as incompatibility of some geophysical measurements. These characteristics of geophysical data are similar to the characteristics of quantum physical data. Notwithstanding all this, contextuality can be seen as a major deviation of quantum theory from classical physics. In particular, the contextual probability viewpoint is the essence of the Växjö interpretation of quantum mechanics. We propose to use quantum probability (QP) for decision-making during the characterization, modelling, exploring and management of the intelligent hydrocarbon reservoir . Quantum Bayesianism (QBism), one of the recently developed information interpretations of quantum theory, can be used as the interpretational basis for such QP decision-making in geology, geophysics and petroleum projects design and management. This article is part of the themed issue ‘Second quantum revolution: foundational questions’.


2021 ◽  
Author(s):  
Tim C Jenkins

Abstract Superposed wavefunctions in quantum mechanics lead to a squared amplitude that introduces interference into a probability density, which has long been a puzzle because interference between probability densities exists nowhere else in probability theory. In recent years, Man’ko and coauthors have successfully reconciled quantum and classical probability using a symplectic tomographic model. Nevertheless, there remains an unexplained coincidence in quantum mechanics, namely, that mathematically, the interference term in the squared amplitude of superposed wavefunctions has the form of a variance of a sum of correlated random variables, and we examine whether there could be an archetypical variable behind quantum probability that provides a mathematical foundation that observes both quantum and classical probability directly. The properties that would need to be satisfied for this to be the case are identified, and a generic variable that satisfies them is found that would be present everywhere, transforming into a process-specific variable wherever a quantum process is active. This hidden generic variable appears to be such an archetype.


Sign in / Sign up

Export Citation Format

Share Document