scholarly journals A New Approach for Monitoring Sweat Ammonia Levels Using a Ventilated Capsule

2021 ◽  
Vol 10 (1) ◽  
pp. 38
Author(s):  
Annemarijn Steijlen ◽  
Jeroen Bastemeijer ◽  
Robbert Nederhoff ◽  
Kaspar Jansen ◽  
Paddy French ◽  
...  

Ammonium levels in sweat can potentially be used to measure muscle fatigue and to diagnose particular metabolic myopathies. To research the potential use of ammonia in sweat as a biomarker, a new real-time monitoring system is developed. This system consists of a capsule that is placed on the skin and ventilated with dry air. A metal-oxide gas sensor in the capsule detects the ammonia that is evaporated from sweat. The sensor system was built, and calibration experiments were performed. The sensors show good sensitivity from 27 mV/ppm to 1.1 mV/ppm in the desired measurement range of 1 to 30 ppm, respectively. A temperature and humidity sensor is integrated to compensate for temperature and humidity effects on the NH3 sensor.

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
P. I. A. Weerasinghe ◽  
H. M. I. Prasanna

Abstract The CG6 is an automated gravity meter that has a worldwide measurement range of over 8000 mGals and a reading resolution of 0.0001 mGal. Some factors that may influence the gravity readings are corrected by the instrument’s software. In this paper, the effects of the ambient temperature and humidity changes on the CG-6’s gravity measurements were investigated with the aim of reducing the uncertainty which remains in gravity measurements in microgal level, and giving recommendations for more accurate results. A controlled heating experiment was used to determine the impact of ambient temperature on gravity and 12 hours of continuous gravity observations were used to identify the impact of humidity on gravity measurements. It was observed that the sensor temperature and the gravity reading were highly correlated with the ambient temperature. The linear correlation with R2 > 0.94 and R2 > 0.90 were found for the corrected gravity reading and the residual sensor temperature variations respectively with the ambient temperature when heating. It was demonstrated that the calculated ambient temperature correction, −0.0011 mGal/oC, is more stable than the correction given by the instrument in terms of standard deviation though the impact of humidity on gravity reading was not clear.


2016 ◽  
Vol 33 (5) ◽  
pp. 977-987 ◽  
Author(s):  
Matthieu Boquet ◽  
Philippe Royer ◽  
Jean-Pierre Cariou ◽  
Mehdi Machta ◽  
Matthieu Valla

AbstractThe measurement range of a coherent wind Doppler lidar (CWDL) along a laser beam is the maximum distance from the lidar where wind speed data are accurately retrieved. It means that, at this distance, a sufficient number of emitted laser photons are backscattered and received by the lidar. Understanding of the propagation of the laser through the atmosphere, and particularly the backscattering and extinction processes from aerosols, is therefore important to estimate the metrological performances of a CWDL instrument. The range is directly related to specific instrument characteristics and atmospheric content, such as the aerosols type, size, and density distributions. Associated with the measurement range is the notion of data availability, which can be defined, at a given range and over a time period, as the percentage number of data retrieved correctly by the CWDL over the total number of measurement attempts.This paper proposes a new approach to predict the CWDL data availability and range of measurement using both instrumental simulation and atmospheric observations of aerosol optical properties from weather stations and simulations. This method is applied in several CWDL measurement campaigns during which estimated data availabilities and ranges are compared with the observations. It is shown that it is fairly possible to anticipate the data availability and the range coverage of CWDL technology at any site of interest where atmospheric data are available. The method also offers an additional way to diagnose the operation of the instrument and will help in the design of future instruments.


Author(s):  
O. Yu. Kovalenko ◽  
M. D. Rybko ◽  
S. A. Mikaeva ◽  
Yu. A. Zhuravleva

The work is devoted to the development of a lighting device with control of the color of the LED strip depending on the value of temperature and humidity. To develop a prototype of a lighting installation, an A-Star 32U4 Micro microcontroller (analogue of Arduino Micro), 2 pieces of RGB tape of 5 and 10 cm each, a DHT11 temperature and humidity sensor, connecting wires, a case were purchased. The A-Star 32U4 Micro microcontroller used in the proposed setup is a universal programmable module based on the ATmega32U4 AVR microcontroller from Microchip (formerly Atmel), which has 32KB flash memory, 2.5KB RAM, and builtin USB functionality. A voltage regulator and power selection circuitry allows the board to be powered from either USB or an external 5.5V to 15V supply, while a resettable PTC fuse on the USB VBUS power supply and reverse protection on the VIN help protect it from accidental damage. In the course of the work, studies were carried out on the operation of the installation under normal conditions and at low and high temperatures.


Polymers ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 1985 ◽  
Author(s):  
Maryam Mesgarpour Tousi ◽  
Yujing Zhang ◽  
Shaowei Wan ◽  
Li Yu ◽  
Chong Hou ◽  
...  

In this study, we fabricated a highly flexible fiber-based capacitive humidity sensor using a scalable convergence fiber drawing approach. The sensor’s sensing layer is made of porous polyetherimide (PEI) with its porosity produced in situ during fiber drawing, whereas its electrodes are made of copper wires. The porosity induces capillary condensation starting at a low relative humidity (RH) level (here, 70%), resulting in a significant increase in the response of the sensor at RH levels ranging from 70% to 80%. The proposed humidity sensor shows a good sensitivity of 0.39 pF/% RH in the range of 70%–80% RH, a maximum hysteresis of 9.08% RH at 70% RH, a small temperature dependence, and a good stability over a 48 h period. This work demonstrates the first fiber-based humidity sensor fabricated using convergence fiber drawing.


Sign in / Sign up

Export Citation Format

Share Document