scholarly journals A Tandem Feature Extraction Approach for Arrhythmia Identification

Electronics ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 976
Author(s):  
Javier Tejedor ◽  
David G. Marquez ◽  
Constantino A. Garcia ◽  
Abraham Otero

Heart disease is currently the leading cause of death in the world. The electrocardiogram (ECG) is the recording of the electrical activity generated by the heart. Its low cost and simplicity have made it an essential test for monitoring heart disease, especially for the identification of arrhythmias. With the advances in electronic technology, there are nowadays sensors that enable the recording of the ECG during the daily life of the patient and its wireless transmission to healthcare facilities. This type of information has a great potential to detect cardiac diseases in their early stages and to permit early interventions before the patient’s health deteriorates. However, to usefully exploit the large volume of information obtained from ambulatory ECG, pattern recognition techniques that are capable of automatically analyzing it are required. Tandem feature extraction techniques have proven to be useful for the processing of physiological parameters such as the electroencephalogram (EEG) and speech. However, to the best of our knowledge, they have never been applied to the ECG. In this paper, the utility of tandem feature extraction for the identification of arrhythmias is studied. The coefficients of a regression using Hermite functions are used to create a feature vector that represents the heartbeat. A multiple-layer perceptron (MLP) is trained using these features and its posterior probability outputs are used to extend the original feature vector. Finally, a Gaussian mixture model (GMM) is trained on the extended feature vectors, which is then used in a GMM-based arrhythmia identification system. This approach has been validated using the MIT-BIH Arrhythmia database. The accuracy of the Gaussian mixture model increased by 15.8% when applied over the extended feature vectors, compared to its application over the original feature vectors, showing the potential of tandem feature extraction for ECG analysis and arrhythmia identification.

2021 ◽  
pp. 1-46
Author(s):  
Donglin Zhu ◽  
Jingbin Cui ◽  
Yan Li ◽  
Zhonghong Wan ◽  
Lei Li

Seismic facies analysis can effectively estimate reservoir properties and seismic waveform clustering is a useful tool for facies analysis. We developed a deep learning-based clustering approach called the modified deep convolutional embedded clustering with adaptive Gaussian mixture model (AGMM-MDCEC) for seismic waveform clustering. Trainable feature extraction and clustering layers in AGMM-MDCEC are implemented using neural networks. The two independent processes of feature extraction and clustering are fused, such that extracted features are modified simultaneously with the results of clustering. A convolutional autoencoder is used in the algorithm for extracting features from seismic data and reduce data redundancy. At the same time, weights of clustering network are fined-tuned through iteration to obtain state-of-the-art clustering results. We apply our new classification algorithm to a data volume acquired in western China to map architectural elements of a complex fluvial depositional system. Our proposed method obtains superior results over those provided by traditional K-means, Gaussian mixture model, and some machine learning methods, and improves the mapping of the extent of the distributary system.


Author(s):  
S. Rouabah ◽  
M. Ouarzeddine ◽  
B. Azmedroub

Due to the increasing volume of available SAR Data, powerful classification processings are needed to interpret the images. GMM (Gaussian Mixture Model) is widely used to model distributions. In most applications, GMM algorithm is directly applied on raw SAR data, its disadvantage is that forest and urban areas are classified with the same label and gives problems in interpretation. In this paper, a combination between the improved Freeman decomposition and GMM classification is proposed. The improved Freeman decomposition powers are used as feature vectors for GMM classification. The E-SAR polarimetric image acquired over Oberpfaffenhofen in Germany is used as data set. The result shows that the proposed combination can solve the standard GMM classification problem.


The most of the existing LID systems based on the Gaussian Mixture model. The main requirement of the GMM based LID system is it require large amount of speech data to train the GMM model. Most of the Indian languages have the similarity because they are derived from Devanagari. Even though common phonemes exists in phoneme sets across the Indian languages, each language contain its unique phonotactic constraints imposed by the language. Any modeling technique capable of capturing all these slight variations imposed by the language is one of the important language identification cue. To model the GMM based LID system which captures above variations it require large number of mixture components.To model the large number of mixture components using Gaussian Mixture Model (GMM), the technique requires a large number of training data for each language class, which is very difficult to get for Indian languages. The main objective of GMM-UBM based LID system is it require less amount of training data to train(model) the system. In this paper, the importance of GMM-UBM modeling for language identification (LID) task for Indian languages are explored using new set of feature vectors. In GMM-UBM LID system based on the new feature vectors, the phonotactic variations imparted by different Indian languages are modeled using Gaussian Mixture model and Universal Background Model (GMM-UBM) technique. In this type of modeling, some amount of data from each class of language is pooled to create a universal background model. From this UBM model each model class is adapted. In this study, it is found that the performance of new feature vectors GMM-UBM based LID system is superior when compared to conventional new feature vectors based GMM LID system.


Sign in / Sign up

Export Citation Format

Share Document