scholarly journals Improved Chaff-Based CMIX for Solving Location Privacy Issues in VANETs

Electronics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1302
Author(s):  
Mishri Saleh Al-Marshoud ◽  
Ali H. Al-Bayatti ◽  
Mehmet Sabir Kiraz

Safety application systems in Vehicular Ad-hoc Networks (VANETs) require the dissemination of contextual information about the scale of neighbouring vehicles; therefore, ensuring security and privacy is of utmost importance. Vulnerabilities in the messages and the system’s infrastructure introduce the potential for attacks that lessen safety and weaken passengers’ privacy. The purpose of short-lived anonymous identities, called “pseudo-identities”, is to divide the trip into unlinkable short passages. Researchers have proposed changing pseudo-identities more frequently inside a pre-defined area, called a cryptographic mix-zone (CMIX) to ensure enhanced protection. According to ETSI ITS technical report recommendations, the researchers must consider the low-density scenarios to achieve unlinkability in CMIX. Recently, Christian et al. proposed a Chaff-based CMIX scheme that sends fake messages under the consideration of low-density conditions to enhance vehicles’ privacy and confuse attackers. To accomplish full unlinkability, in this paper, we first show the following security and privacy vulnerabilities in the Christian et al. scheme: Linkability attacks outside the CMIX may occur due to deterministic data sharing during the authentication phase (e.g., duplicate certificates for each communication). Adversaries may inject fake certificates, which breaks Cuckoo Filters’ (CFs) updates authenticity, and the injection may be deniable. CMIX symmetric key leakage outside the coverage may occur. We propose a VPKI-based protocol to mitigate these issues. First, we use a modified version of Wang et al.’s scheme to provide mutual authentication without revealing the real identity. To this end, the messages of a vehicle are signed with a different pseudo-identity “certificate”. Furthermore, the density is increased via the sending of fake messages in low traffic periods to provide unlinkability outside the mix-zone. Second, unlike Christian et al.’s scheme, we use the Adaptive Cuckoo Filter (ACF) instead of CF to overcome the false positives’ effect on the whole filter. Moreover, to prevent any alteration of the ACFs, only RUSs distribute the updates, and they sign the new fingerprints. Third, the mutual authentication prevents any leakage from the mix zones’ symmetric keys by generating a fresh one for each communication through a Diffie–Hellman key exchange.

Author(s):  
Jetzabel Serna-Olvera ◽  
Valentina Casola ◽  
Massimiliano Rak ◽  
Jesús Luna ◽  
Manel Medina ◽  
...  

Vehicular Ad-Hoc NETworks (VANETs) improve road safety by preventing and reducing traffic accidents, but VANETs also raise important security and privacy issues. A common approach widely adopted in VANETs is the use of Public Key Infrastructures (PKI) and digital certificates in order to enable authentication and confidentiality, usually relying on a large set of regional Certification Authorities (CAs). Despite the advantages of the latter approach, it raises new problems related with the secure interoperability among the different –and usually unknown- issuing CAs. This paper addresses authentication and interoperability issues in vehicular communications, considering an interregional scenario where mutual authentication between all the nodes is needed. The use of an Authentication Service (AS) is proposed, which supplies vehicles with a trusted set of authentication credentials by implementing a near real-time certificate status service via the well-known Online Certificate Status Protocol (OCSP). The proposed AS also implements a mechanism to quantitatively evaluate the trust level of a CA, in order to decide on-the-fly if an interoperability relationship can be created. The feasibility and performance of the proposed mechanisms are demonstrated via simulations and quantitative analyses by providing a set of communication measurements considering an urban scenario.


2019 ◽  
Vol 8 (3) ◽  
pp. 4272-4283

VANETs have developed as one of the largest potential topics in the field of automotive industries with promising and challenging futures in various aspects. VANETs permit intelligent vehicles to generate their own organized network without the need of the stable network. In this paper we introduce VANETs and its comparison with MANETs, standard wireless access in VANETs like WAVE model partly based on OSI model. We present a comprehensive study on routing protocol in VANETs like position-based routing, Geo-Cast based routing, etc. and scheduling in VANETs like deadline-based scheduling, hybrid-based scheduling, etc. This paper presents open research issues in VANETs highlighting challenges like security and privacy issues, network congestion control issues, etc, numerous routing and scheduling issues in VANETs.


2020 ◽  
Vol 21 (3) ◽  
pp. 425-440 ◽  
Author(s):  
Sumit Kumar ◽  
Jaspreet Singh

The new age of the Internet of Things (IoT) is motivating the advancement of traditional Vehicular Ad-Hoc Networks (VANETs) into the Internet of Vehicles (IoV). This paper is an overview of smart and secure communications to reduce traffic congestion using IoT based VANETs, known as IoV networks. Studies and observations made in this paper suggest that the practice of combining IoT and VANET for a secure combination has rarely practiced. IoV uses real-time data communication between vehicles to everything (V2X) using wireless communication devices based on fog/edge computing; therefore, it has considered as an application of Cyber-physical systems (CPS). Various modes of V2X communication with their connecting technologies also discussed. This paper delivers a detailed introduction to the Internet of Vehicles (IoV) with current applications, discusses the architecture of IoV based on currently existing communication technologies and routing protocols, presenting different issues in detail, provides several open research challenges and the trade-off between security and privacy in the area of IoV has reviewed. From the analysis of previous work in the IoV network, we concluded the utilization of artificial intelligence and machine learning concept is a beneficial step toward the future of IoV model.


Author(s):  
Varun G. Menon ◽  
Joe Prathap

In recent years Vehicular Ad Hoc Networks (VANETs) have received increased attention due to its numerous applications in cooperative collision warning and traffic alert broadcasting. VANETs have been depending on cloud computing for networking, computing and data storage services. Emergence of advanced vehicular applications has led to the increased demand for powerful communication and computation facilities with low latency. With cloud computing unable to satisfy these demands, the focus has shifted to bring computation and communication facilities nearer to the vehicles, leading to the emergence of Vehicular Fog Computing (VFC). VFC installs highly virtualized computing and storage facilities at the proximity of these vehicles. The integration of fog computing into VANETs comes with a number of challenges that range from improved quality of service, security and privacy of data to efficient resource management. This paper presents an overview of this promising technology and discusses the issues and challenges in its implementation with future research directions.


2015 ◽  
Vol 30 (6) ◽  
pp. e3081 ◽  
Author(s):  
Chin-Ling Chen ◽  
Mao-Lun Chiang ◽  
Chun-Cheng Peng ◽  
Chun-Hsin Chang ◽  
Qing-Ru Sui

Sign in / Sign up

Export Citation Format

Share Document