scholarly journals Internet of Vehicles over Vanets: Smart and Secure Communication using IoT

2020 ◽  
Vol 21 (3) ◽  
pp. 425-440 ◽  
Author(s):  
Sumit Kumar ◽  
Jaspreet Singh

The new age of the Internet of Things (IoT) is motivating the advancement of traditional Vehicular Ad-Hoc Networks (VANETs) into the Internet of Vehicles (IoV). This paper is an overview of smart and secure communications to reduce traffic congestion using IoT based VANETs, known as IoV networks. Studies and observations made in this paper suggest that the practice of combining IoT and VANET for a secure combination has rarely practiced. IoV uses real-time data communication between vehicles to everything (V2X) using wireless communication devices based on fog/edge computing; therefore, it has considered as an application of Cyber-physical systems (CPS). Various modes of V2X communication with their connecting technologies also discussed. This paper delivers a detailed introduction to the Internet of Vehicles (IoV) with current applications, discusses the architecture of IoV based on currently existing communication technologies and routing protocols, presenting different issues in detail, provides several open research challenges and the trade-off between security and privacy in the area of IoV has reviewed. From the analysis of previous work in the IoV network, we concluded the utilization of artificial intelligence and machine learning concept is a beneficial step toward the future of IoV model.

PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0257044
Author(s):  
Eko Fajar Cahyadi ◽  
Min-Shiang Hwang

The study of security and privacy in vehicular ad hoc networks (VANETs) has become a hot topic that is wide open to discussion. As the quintessence of this aspect, authentication schemes deployed in VANETs play a substantial role in providing secure communication among vehicles and the surrounding infrastructures. Many researchers have proposed a variety of schemes related to information verification and computation efficiency in VANETs. In 2018, Kazemi et al. proposed an evaluation and improvement work towards Azees et al.’s efficient anonymous authentication with conditional privacy-preserving (EAAP) scheme for VANETs. They claimed that the EAAP suffered from replaying attacks, impersonation attacks, modification attacks, and cannot provide unlinkability. However, we also found out if Kazemi et al.’s scheme suffered from the unlinkability issue that leads to a forgery attack. An adversary can link two or more messages sent by the same user by applying Euclid’s algorithm and derives the user’s authentication key. To remedy the issue, in this paper, we proposed an improvement by encrypting the message using a shared secret key between sender and receiver and apply a Nonce in the final message to guarantee the unlinkability between disseminated messages.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Tianhong Su ◽  
Sujie Shao ◽  
Shaoyong Guo ◽  
Min Lei

With the development of wireless local area networks and intelligent transportation technologies, the Internet of Vehicles is considered to be an effective method to alleviate the severe situation of the current transportation system. The vehicles in the Internet of Vehicles system build the Vehicular Ad Hoc Networks through wireless communication technology and dynamically provide different services through the real-time driving information broadcast by the vehicles. Vehicle drivers can control the distance, planning the driving route, between vehicles according to the current traffic environment, which improves the overall safety and efficiency of the traffic system. Due to the particularity of the Internet of Vehicles system service, vehicles need to broadcast their location information frequently. Attackers can collect and analyze vehicle broadcast information to steal privacy and even directionally track the owner through the driving trajectory, bringing serious security risks. This paper proposes a blockchain-based privacy protection system for the Internet of Vehicles. The system combines the blockchain with the Internet of Vehicles system to design a safe and efficient two-way authentication and key agreement algorithm through encryption and signature algorithm, which also solves the central dependency problem of the traditional Internet of Vehicles system.


Author(s):  
Hayder M. Amer ◽  
Ethar Abduljabbar Hadi ◽  
Lamyaa Ghaleb Shihab ◽  
Hawraa H. Al Mohammed ◽  
Mohammed J. Khami

Technology such as vehicular ad hoc networks can be used to enhance the convenience and safety of passenger and drivers. The vehicular ad hoc networks safety applications suffer from performance degradation due to channel congestion in high-density situations. In order to improve vehicular ad hoc networks reliability, performance, and safety, wireless channel congestion should be examined. Features of vehicular networks such as high transmission frequency, fast topology change, high mobility, high disconnection make the congestion control is a challenging task. In this paper, a new congestion control approach is proposed based on the concept of hybrid power control and contention window to ensure a reliable and safe communications architecture within the internet of vehicles network. The proposed approach performance is investigated using an urban scenario. Simulation results show that the network performance has been enhanced by using the hybrid developed strategy in terms of received messages, delay time, messages loss, data collision and congestion ratio.


2021 ◽  
Vol 7 (2) ◽  
Author(s):  
Akshay Kumar MV ◽  
Amogh C ◽  
Bhuvan S Kashyap ◽  
Drupad N Maharaj ◽  
Shazia Sultana

India accounts for the highest road accidents and traffic congestion globally. The necessity for a canny vehicle framework is of great importance. VANET, abbreviated as Vehicular ad hoc networks is a network created in an ad hoc manner where different vehicles can exchange useful information among each other with dedicated servers ensuring safe travel. Security in VANET has always been a challenge in implementing a real time intelligent transport system. VANET is a type of mobile ad-hoc, to give correspondences among close by vehicles and among vehicles and close by fixed hardware. Vehicular ad hoc networks are highly dynamic in nature and suffer from frequent path breakage due to the high velocity of the moving vehicle. Hence, there are many security challenges and different types of attacks that makes VANETs less secure. Therefore, providing secure dedicated short-range communication (DSRC) easefully with any loss of data or malicious nodes has been a major research area. The major concern being addressed in the paper is to provide secure communication and save lives in road accidents. The role of security is high and messages in DSRC send warning messages to other vehicles. If attackers change these messages, then accidents become a part of the network and users’ lives can be at risk. Different classes of attacks include monitoring attack, social attack, timing attack, application attack and network attack to name a few. Advanced encryption standard is a symmetric block encryption algorithm. There is no evidence to crack this algorithm till date. This paper will provide a detailed overview of VANET architecture, types of attacks on VANET, AES algorithm and its salient features and how this algorithm could be utilized to make intelligent transport systems secure.


Author(s):  
Amira Kchaou ◽  
Ryma Abassi ◽  
Sihem Guemara El Fatmi

Vehicular ad-hoc networks (VANETs) allow communication among vehicles using some fixed equipment on roads called roads side units. Vehicular communications are used for sharing different kinds of information between vehicles and RSUs in order to improve road safety and provide travelers comfort using exchanged messages. However, falsified or modified messages can be transmitted that affect the performance of the whole network and cause bad situations in roads. To mitigate this problem, trust management can be used in VANET and can be distributive for ensuring safe and secure communication between vehicles. Trust is a security concept that has attracted the interest of many researchers and used to build confident relations among vehicles. Hence, the authors propose a secured clustering mechanism for messages exchange in VANET in order to organize vehicles into clusters based on vehicles velocity, then CH computes the credibility of message using the reputation of vehicles and the miner controls the vehicle's behavior for verifying the correctness of the message.


2018 ◽  
Vol 7 (2.31) ◽  
pp. 245
Author(s):  
Tanuja Kayarga ◽  
H M. Navyashree

In the recent times due to the increase of vehicular nodes in a vehicular communication network, there is a need of developing efficient systems in order to optimize the vehicular traffic congestion issues in urban areas. The current research trends shows that most of the conventional studies focused on developing fuzzy inference systems based vehicular traffic congestion model which has gained lots of attention on detecting and minimizing the congestion levels.We have proposed a new approach towards detection and controlling of traffic congestion in VANET. The proposed system utilizes the communication channels very efficiently and irrespective of any kind of overload. This proposed system aims to introduce a novel framework for identifying traffic jam on Vehicular Ad-hoc Networks. In order to detect and minimize the level of congestion our approach will use a fuzzy logic based approach to notify the drivers about available routes during the traffic congestion. An experimental prototype will be set up to enable the graphical simulation.


Sign in / Sign up

Export Citation Format

Share Document