scholarly journals Can Deep Models Help a Robot to Tune Its Controller? A Step Closer to Self-tuning Model Predictive Controllers

Electronics ◽  
2021 ◽  
Vol 10 (18) ◽  
pp. 2187
Author(s):  
Mohit Mehndiratta ◽  
Efe Camci ◽  
Erdal Kayacan

Motivated by the difficulty roboticists experience while tuning model predictive controllers (MPCs), we present an automated weight set tuning framework in this work. The enticing feature of the proposed methodology is the active exploration approach that adopts the exploration–exploitation concept at its core. Essentially, it extends the trial-and-error method by benefiting from the retrospective knowledge gained in previous trials, thereby resulting in a faster tuning procedure. Moreover, the tuning framework adopts a deep neural network (DNN)-based robot model to conduct the trials during the simulation tuning phase. Thanks to its high fidelity dynamics representation, a seamless sim-to-real transition is demonstrated. We compare the proposed approach with the customary manual tuning procedure through a user study wherein the users inadvertently apply various tuning methodologies based on their progressive experience with the robot. The results manifest that the proposed methodology provides a safe and time-saving framework over the manual tuning of MPC by resulting in flight-worthy weights in less than half the time. Moreover, this is the first work that presents a complete tuning framework extending from robot modeling to directly obtaining the flight-worthy weight sets to the best of the authors’ knowledge.

Geophysics ◽  
1941 ◽  
Vol 6 (2) ◽  
pp. 168-179 ◽  
Author(s):  
M. O. Gibson

Given a network, as in a gravity survey, comprising observed differences in the values of adjacent points, any adjustment of the network, however obtained, is shown to be a least square adjustment if (1) the sum of the corrected observations around any circuit is zero and (2) the sum of the weighted corrections at any junction is zero. This principle provides a means of controlling necessary approximations such as the subdivision of a large network, and simplifies subsequent adjustments made necessary by extension or revision of the observations. It also serves in some cases to reduce the number of equations and in others to eliminate the equations entirely. The paper outlines a time‐saving trial and error method of solving network equations, applicable to electric circuits as well as observational network problems.


Author(s):  
Lidiya Derbenyova

The article focuses on the problems of translation in the field of hermeneutics, understood as a methodology in the activity of an interpreter, the doctrine of the interpretation of texts, as a component of the transmission of information in a communicative aspect. The relevance of the study is caused by the special attention of modern linguistics to the under-researched issues of hermeneutics related to the problems of transmission of foreign language text semantics in translation. The process of translation in the aspect of hermeneutics is regarded as the optimum search and decision-making process, which corresponds to a specific set of functional criteria of translation, which can take many divergent forms. The translator carries out a number of specific translation activities: the choice of linguistic means and means of expression in the translation language, replacement and compensation of nonequivalent units. The search for the optimal solution itself is carried out using the “trial and error” method. The translator always acts as an interpreter. Within the boundaries of a individual utterance, it must be mentally reconstructed as conceptual situations, the mentally linguistic actions of the author, which are verbalized in this text.


Author(s):  
H. J. Godwin

The determination of a pair of fundamental units in a totally real cubic field involves two operations—finding a pair of independent units (i.e. such that neither is a power of the other) and from these a pair of fundamental units (i.e. a pair ε1; ε2 such that every unit of the field is of the form with rational integral m, n). The first operation may be accomplished by exploring regions of the integral lattice in which two conjugates are small or else by factorizing small primes and comparing different factorizations—a trial-and-error method, but often a quick one. The second operation is accomplished by obtaining inequalities which must be satisfied by a fundamental unit and its conjugates and finding whether or not a unit exists satisfying these inequalities. Recently Billevitch ((1), (2)) has given a method, of the nature of an extension of the first method mentioned above, which involves less work on the second operation but no less on the first.


2007 ◽  
Vol 15 (1) ◽  
pp. 191-197 ◽  
Author(s):  
Tor A. Johansen ◽  
Warren Jackson ◽  
Robert Schreiber ◽  
Petter Tondel

2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Mourad Elloumi ◽  
Samira Kamoun

This paper deals with the self-tuning regulator for large-scale stochastic nonlinear systems, which are composed of several interconnected nonlinear monovariable subsystems. Each interconnected subsystem is described by discrete Hammerstein model with unknown and time-varying parameters. This self-tuning control is developed on the basis of the minimum variance approach and is combined by a recursive algorithm in the estimation step. The parametric estimation step is performed on the basis of the prediction error method and the least-squares techniques. Simulation results of the proposed self-tuning regulator for two interconnected nonlinear hydraulic systems show the reliability and effectiveness of the developed method.


2016 ◽  
Vol 4 (29) ◽  
pp. 11446-11452 ◽  
Author(s):  
Zhonglu Guo ◽  
Jian Zhou ◽  
Linggang Zhu ◽  
Zhimei Sun

Identifying suitable photocatalysts for photocatalytic water splitting to produce hydrogen fuelviasunlight is an arduous task by the traditional trial-and-error method.


2009 ◽  
Vol 424 ◽  
pp. 197-204 ◽  
Author(s):  
W. Assaad ◽  
H.J.M. Geijselaers ◽  
K.E. Nilsen

The design of extrusion dies depends on the experience of the designer. After the die has been manufactured, it is tested during an extrusion process and machined several times until it works properly. The die is designed by a trial and error method which is expensive interms of time consumption and the amount of scrap. Research is going on to replace the trial pressing with finite element simulations that concentrate on material and tool analysis. In order to validate the tool simulations, an experiment is required for measuring the deformation of the die. Measuring the deformation of the die is faced with two main obstacles: high temperature and little free space. To overcome these obstacles a method is tried, which works by applying a laser beam on a reflecting surface. This cheap method is simple, robust and gives good results. This paper describes measuring the deformation of a flat die used to extrude a single U shape profile. In addition, finite element calculation of the die is performed. Finally, a comparison is performed between experimental and numerical results.


Sign in / Sign up

Export Citation Format

Share Document