scholarly journals On the Optimal Selection and Integration of Batteries in DC Grids through a Mixed-Integer Quadratic Convex Formulation

Electronics ◽  
2021 ◽  
Vol 10 (19) ◽  
pp. 2339
Author(s):  
Federico Martin Serra ◽  
Oscar Danilo Montoya ◽  
Lázaro Alvarado-Barrios ◽  
Cesar Álvarez-Arroyo ◽  
Harold R. Chamorro

This paper deals with the problem of the optimal selection and location of batteries in DC distribution grids by proposing a new mixed-integer convex model. The exact mixed-integer nonlinear model is transformed into a mixed-integer quadratic convex model (MIQC) by approximating the product among voltages in the power balance equations as a hyperplane. The most important characteristic of our proposal is that the MIQC formulations ensure the global optimum reaching via branch & bound methods and quadratic programming since each combination of the binary variables generates a node with a convex optimization subproblem. The formulation of the objective function is associated with the minimization of the energy losses for a daily operation scenario considering high renewable energy penetration. Numerical simulations show the effectiveness of the proposed MIQC model to reach the global optimum of the optimization model when compared with the exact optimization model in a 21-node test feeder. All the validations are carried out in the GAMS optimization software.

Electronics ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 176
Author(s):  
Federico Molina-Martin ◽  
Oscar Danilo Montoya ◽  
Luis Fernando Grisales-Noreña ◽  
Jesus C. Hernández

The problem of the optimal placement and dimensioning of constant power sources (i.e., distributed generators) in electrical direct current (DC) distribution networks has been addressed in this research from the point of view of convex optimization. The original mixed-integer nonlinear programming (MINLP) model has been transformed into a mixed-integer conic equivalent via second-order cone programming, which produces a MI-SOCP approximation. The main advantage of the proposed MI-SOCP model is the possibility of ensuring global optimum finding using a combination of the branch and bound method to address the integer part of the problem (i.e., the location of the power sources) and the interior-point method to solve the dimensioning problem. Numerical results in the 21- and 69-node test feeders demonstrated its efficiency and robustness compared to an exact MINLP method available in GAMS: in the case of the 69-node test feeders, the exact MINLP solvers are stuck in local optimal solutions, while the proposed MI-SOCP model enables the finding of the global optimal solution. Additional simulations with daily load curves and photovoltaic sources confirmed the effectiveness of the proposed MI-SOCP methodology in locating and sizing distributed generators in DC grids; it also had low processing times since the location of three photovoltaic sources only requires 233.16s, which is 3.7 times faster than the time required by the SOCP model in the absence of power sources.


DYNA ◽  
2021 ◽  
Vol 88 (217) ◽  
pp. 178-184
Author(s):  
Alexander Molina ◽  
Oscar Danilo Montoya ◽  
Walter Gil-González

This paper addresses the optimal location and sizing of photovoltaic (PV) sources in isolated direct current (DC) electrical networks, considering time-varying load and renewable generation curves. The mathematical formulation of this problem corresponds to mixed-integer nonlinear programming (MINLP), which is reformulated via mixed-integer convex optimization: This ensures the global optimum solving the resulting optimization model via branch & bound and interior-point methods. The main idea of including PV sources in the DC grid is to minimize the daily energy losses and greenhouse emissions produced by diesel generators in isolated areas. The GAMS package is employed to solve the MINLP model, using mixed and integer variables; also, the CVX and MOSEK solvers are used to obtain solutions from the proposed mixed-integer convex model in the MATLAB. Numerical results demonstrate important reductions in the daily energy losses and the harmful gas emissions when PV sources are optimally integrated into DC grid.


Electronics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1452
Author(s):  
Cristian Mateo Castiblanco-Pérez ◽  
David Esteban Toro-Rodríguez ◽  
Oscar Danilo Montoya ◽  
Diego Armando Giral-Ramírez

In this paper, we propose a new discrete-continuous codification of the Chu–Beasley genetic algorithm to address the optimal placement and sizing problem of the distribution static compensators (D-STATCOM) in electrical distribution grids. The discrete part of the codification determines the nodes where D-STATCOM will be installed. The continuous part of the codification regulates their sizes. The objective function considered in this study is the minimization of the annual operative costs regarding energy losses and installation investments in D-STATCOM. This objective function is subject to the classical power balance constraints and devices’ capabilities. The proposed discrete-continuous version of the genetic algorithm solves the mixed-integer non-linear programming model that the classical power balance generates. Numerical validations in the 33 test feeder with radial and meshed configurations show that the proposed approach effectively minimizes the annual operating costs of the grid. In addition, the GAMS software compares the results of the proposed optimization method, which allows demonstrating its efficiency and robustness.


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1967
Author(s):  
Gaurav Kumar Roy ◽  
Marco Pau ◽  
Ferdinanda Ponci ◽  
Antonello Monti

Direct Current (DC) grids are considered an attractive option for integrating high shares of renewable energy sources in the electrical distribution grid. Hence, in the future, Alternating Current (AC) and DC systems could be interconnected to form hybrid AC-DC distribution grids. This paper presents a two-step state estimation formulation for the monitoring of hybrid AC-DC grids. In the first step, state estimation is executed independently for the AC and DC areas of the distribution system. The second step refines the estimation results by exchanging boundary quantities at the AC-DC converters. To this purpose, the modulation index and phase angle control of the AC-DC converters are integrated into the second step of the proposed state estimation formulation. This allows providing additional inputs to the state estimation algorithm, which eventually leads to improve the accuracy of the state estimation results. Simulations on a sample AC-DC distribution grid are performed to highlight the benefits resulting from the integration of these converter control parameters for the estimation of both the AC and DC grid quantities.


Author(s):  
Julian Saat ◽  
Raphael Bleilevens ◽  
Dominik Mildt ◽  
Jens Priebe ◽  
Niklas Wehbring ◽  
...  

Author(s):  
LianZheng Ge ◽  
Jian Chen ◽  
Ruifeng Li ◽  
Peidong Liang

Purpose The global performance of industrial robots partly depends on the properties of drive system consisting of motor inertia, gearbox inertia, etc. This paper aims to deal with the problem of optimization of global dynamic performance for robotic drive system selected from available components. Design/methodology/approach Considering the performance specifications of drive system, an optimization model whose objective function is composed of working efficiency and natural frequency of robots is proposed. Meanwhile, constraints including the rated and peak torque of motor, lifetime of gearbox and light-weight were taken into account. Furthermore, the mapping relationship between discrete optimal design variables and component properties of drive system were presented. The optimization problem with mixed integer variables was solved by a mixed integer-laplace crossover power mutation algorithm. Findings The optimization results show that our optimization model and methods are applicable, and the performances are also greatly promoted without sacrificing any constraints of drive system. Besides, the model fits the overall performance well with respect to light-weight ratio, safety, cost reduction and others. Practical implications The proposed drive system optimization method has been used for a 4-DOF palletizing robot, which has been largely manufactured in a factory. Originality/value This paper focuses on how the simulation-based optimization can be used for the purpose of generating trade-offs between cost, performance and lifetime when designing robotic drive system. An applicable optimization model and method are proposed to handle the dynamic performance optimization problem of a drive system for industrial robot.


2021 ◽  
Author(s):  
Mohammadreza Vatani

AC-DC power systems have been operating more than sixty years. Nonlinear bus-wise power balance equations provide accurate model of AC-DC power systems. However, optimization tools for planning and operation require linear version, even if approximate, for creating tractable algorithms, considering modern elements such as DERs (distributed energy resources). Hitherto, linear models of only AC power systems are available, which coincidentally are called DC power flow. To address this drawback, linear bus-wise power balance equations are developed for AC-DC power systems and presented. As a first contribution, while AC and DC lines are represented by susceptance and conductance elements, AC-DC power converters are represented by a proposed linear relationship. As a second contribution, a three-step linear AC-DC power flow method is proposed. The first step solves the whole network considering it as a linear AC network, yielding bus phase angles at all busses. The second step computes attributes of the proposed linear model of all AC-DC power converters. The third step solves the linear model of the AC-DC system including converters, yielding bus phase angles at AC busses and voltage magnitudes at DC busses. The benefit of the proposed linear power flow model of AC-DC power system, while an approximation of the nonlinear model, enables representation of bus-wise power balance of AC-DC systems in complex planning and operational optimization formulations and hence holds the promise of phenomenal progress. The proposed linear AC-DC power systems is tested on numerous IEEE test systems and demonstrated to be fast, reliable, and consistent.


Sign in / Sign up

Export Citation Format

Share Document