scholarly journals Correcting Errors in Color Image Encryption Algorithm Based on Fault Tolerance Technique

Electronics ◽  
2021 ◽  
Vol 10 (23) ◽  
pp. 2890
Author(s):  
Heba G. Mohamed ◽  
Fadwa Alrowais ◽  
Dalia H. ElKamchouchi

Security standards have been raised through modern multimedia communications technology, which allows for enormous progress in security. Modern multimedia communication technologies are concerned with fault tolerance technique and information security. As a primary method, there is widespread use of image encryption to protect image information security. Over the past few years, image encryption has paid more attention to combining DNA technologies in order to increase security. The objective here is to provide a new method for correcting color image encryption errors due to the uncertainty of DNA computing by using the fractional order hyperchaotic Lorenz system. To increase randomness, the proposed cryptosystem is applied to the three plain image channels: Red, Green, and Blue. Several methods were compared including the following: entropy, correlation, key sensitivity, key space, data loss attacks, speed computation, Number of Pixel changing rate (NPCR), and Unified Average Change Intensity randomness (UACI) tests. Consequently, the proposed scheme is very secure against a variety of cryptographic attacks.

2015 ◽  
Vol 742 ◽  
pp. 294-298
Author(s):  
Bin Lu ◽  
Yu Chen Li ◽  
Fen Lin Liu

A General Feistal Structure based color image encryption and authentication algorithm is designed in this paper. The plain image is first permuted, then divided into groups of size pixels and encrypted by block encryption algorithm; finally the cipher image is obtained by performing inverse permutation on the image. In which, block encryption function is the kernel part of the encryption algorithm, and is designed with general feistel structure. To provide integrality authentication function, the last cipher block is the cipher of the sum of all plain blocks. It’s from experiments and analysis that the algorithm is secure and valid.


Author(s):  
Naveenkumar S K ◽  
Panduranga H T ◽  
Kiran P

Image information security plays a vital role in computing and communication technologies. This paper describes a new concept of expand and shrink to enhance the strength of chaos based image encryption technique. This method consists of both permutations as well as substitution process for image scrambling and encryption. In permutation plain image is shuffled using chaos technique. Input image undergo two times chaos permutation in-between expand and shrink process leads to substitution. Permutation decreases the correlation between the pixel and substitution increases the entropy of encrypted image. Proposed encryption technique works for both gray-scale and color image. From the experiment highly scrambled image is obtained at the end of encryption process. Decryption process employs exactly reverse process of encryption which results in the reconstructed images.


2021 ◽  
Author(s):  
Lin Teng ◽  
Xingyuan Wang ◽  
Feifei Yang ◽  
Yongjin Xian

Abstract A novel color image encryption algorithm based on a cross 2D hyperchaotic map is proposed in this paper. The cross 2D hyperchaotic map is constructed using one nonlinear function and two chaotic maps with cross structure. Chaotic behaviors are illustrated using bifurcation diagrams, Lyapunov exponent spectra and phase portraits, etc. In the color image encryption algorithm, the keys are generated using hash function SHA-512 and the information of plain color image. First, the color plain image is converted to a combined bit-level matrix and permuted by the chaos based row and column combined cycle shift scrambling method. Then the scrambled integer matrix is diffused according to the selecting sequence which depends on the chaotic sequence. Last, the cipher color image is obtained by decomposed the diffused matrix. Simulation results show that the algorithm can encrypt the color image effectively and has good security.


Symmetry ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1497 ◽  
Author(s):  
Zhen Li ◽  
Changgen Peng ◽  
Weijie Tan ◽  
Liangrong Li

To ensure the security of digital images during transmission and storage, an efficient and secure chaos-based color image encryption scheme using bit-level permutation is proposed. Our proposed image encryption algorithm belongs to symmetric cryptography. Here, we process three color components simultaneously instead of individually, and consider the correlation between them. We propose a novel bit-level permutation algorithm that contains three parts: a plain-image related rows and columns substitution, a pixel-level roll shift part, and a bit-level cyclic shift part. In the plain-related rows and columns substitution part, we involve the plain-image information to generate a control sequence by using a skew tent system. This process ensures that the correlation between three color components can be totally broken, and our cryptosystem has enough plain-image sensitivity to resist the differential attack. In the pixel-level roll shift part and bit-level cyclic shift part, we have a fully bit-level permutation controlled by two sequences using a Rucklidge system. The simulation and some common security analyses are given. Test results show that our proposed scheme has good security performance and a speed advantage compared to other works.


2020 ◽  
Vol 309 ◽  
pp. 03017 ◽  
Author(s):  
Kaige Zhu ◽  
Jinli Cheng

In this paper, we design a color image encryption algorithm based on chaotic system and block compressive sensing. Firstly, the sparse representation of the plain-image is obtained by an adaptive learning dictionary. Secondly, the key streams are produced from two excellent low-dimensional chaotic maps, where updating the initial values and parameters rely on the SHA-384 and the input image. Thirdly, three measurement matrices of R, G, B components are constructed from the chaotic sequences, respectively. Finally, a random rows and columns diffusion method is performed on the encrypted image. Experimental results and safety analysis prove that the proposed scheme has excellent performance.


2021 ◽  
Vol 31 (09) ◽  
pp. 2150125
Author(s):  
Shanshan Cheng ◽  
Jingru Sun ◽  
Cong Xu

As image is an important way of information representation, researchers pay more and more attention on image encryption. In order to improve the performance of image encryption, a novel image encryption scheme based on a hybrid cascaded chaotic system and sectoral segmentation is proposed in this paper. Hybrid cascaded chaotic system has a larger key space, higher complexity, more sensitivity to initial conditions. Four chaotic sequences relevant to a plain image are generated by this system, which strengthen plaintext correlation and the randomness. During the scrambling process, sectoral segmentation focuses on how to extract a sequence from the disk storing data, which can not only reduce the correlation between the three components of the image, but also hide image information to a large extent. Further, a DNA algorithm is used in the diffusion process. Simulation shows that the proposed scheme can effectively resist various attacks and improve the encryption performance.


2011 ◽  
Vol 5 (3) ◽  
pp. 1-15
Author(s):  
Himani Agrawal ◽  
◽  
Monisha Sharma ◽  

2021 ◽  
Vol 104 (1) ◽  
pp. 003685042110033
Author(s):  
Javad Mostafaee ◽  
Saleh Mobayen ◽  
Behrouz Vaseghi ◽  
Mohammad Vahedi ◽  
Afef Fekih

This paper proposes a novel exponential hyper–chaotic system with complex dynamic behaviors. It also analyzes the chaotic attractor, bifurcation diagram, equilibrium points, Poincare map, Kaplan–Yorke dimension, and Lyapunov exponent behaviors. A fast terminal sliding mode control scheme is then designed to ensure the fast synchronization and stability of the new exponential hyper–chaotic system. Stability analysis was performed using the Lyapunov stability theory. One of the main features of the proposed controller is the finite time stability of the terminal sliding surface designed with high–order power function of error and derivative of error. The approach was implemented for image cryptosystem. Color image encryption was carried out to confirm the performance of the new hyper–chaotic system. For image encryption, the DNA encryption-based RGB algorithm was used. Performance assessment of the proposed approach confirmed the ability of the proposed hyper–chaotic system to increase the security of image encryption.


Sign in / Sign up

Export Citation Format

Share Document