scholarly journals Infrared Image Super-Resolution via Progressive Compact Distillation Network

Electronics ◽  
2021 ◽  
Vol 10 (24) ◽  
pp. 3107
Author(s):  
Kefeng Fan ◽  
Kai Hong ◽  
Fei Li

Deep convolutional neural networks are capable of achieving remarkable performance in single-image super-resolution (SISR). However, due to the weak availability of infrared images, heavy network architectures for insufficient infrared images are confronted by excessive parameters and computational complexity. To address these issues, we propose a lightweight progressive compact distillation network (PCDN) with a transfer learning strategy to achieve infrared image super-resolution reconstruction with a few samples. We design a progressive feature residual distillation (PFDB) block to efficiently refine hierarchical features, and parallel dilation convolutions are utilized to expand PFDB’s receptive field, thereby maximizing the characterization power of marginal features and minimizing the network parameters. Moreover, the bil-global connection mechanism and the difference calculation algorithm between two adjacent PFDBs are proposed to accelerate the network convergence and extract the high-frequency information, respectively. Furthermore, we introduce transfer learning to fine-tune network weights with few-shot infrared images to obtain infrared image mapping information. Experimental results suggest the effectiveness and superiority of the proposed framework with low computational load in infrared image super-resolution. Notably, our PCDN outperforms existing methods on two public datasets for both ×2 and ×4 with parameters less than 240 k, proving its efficient and excellent reconstruction performance.

2018 ◽  
Vol 8 (10) ◽  
pp. 1864 ◽  
Author(s):  
Xingguo Liu ◽  
Yingpin Chen ◽  
Zhenming Peng ◽  
Juan Wu ◽  
Zhuoran Wang

Owing to the limitations of the imaging principle as well as the properties of imaging systems, infrared images often have some drawbacks, including low resolution, a lack of detail, and indistinct edges. Therefore, it is essential to improve infrared image quality. Considering the information of neighbors, a description of sparse edges, and by avoiding staircase artifacts, a new super-resolution reconstruction (SRR) method is proposed for infrared images, which is based on fractional order total variation (FTV) with quaternion total variation and the L p quasinorm. Our proposed method improves the sparsity exploitation of FTV, and efficiently preserves image structures. Furthermore, we adopt the plug-and-play alternating direction method of multipliers (ADMM) and the fast Fourier transform (FFT) theory for the proposed method to improve the efficiency and robustness of our algorithm; in addition, an accelerated step is adopted. Our experimental results show that the proposed method leads to excellent performances in terms of an objective evaluation and the subjective visual effect.


Sensors ◽  
2018 ◽  
Vol 18 (8) ◽  
pp. 2587 ◽  
Author(s):  
Xudong Zhang ◽  
Chunlai Li ◽  
Qingpeng Meng ◽  
Shijie Liu ◽  
Yue Zhang ◽  
...  

Super resolution methods alleviate the high cost and high difficulty in applying high resolution infrared image sensors. In this paper we present a novel single image super resolution method for infrared images by combining compressive sensing theory and deep learning. Low resolution images can be regarded as the compressed sampling results of the high resolution ones in compressive sensing. With sparsity in this theory, higher resolution images can be reconstructed. However, because of diverse level of sparsity for different images, the output contains noise and loss of high frequency information. Deep convolutional neural network provides a solution to relieve the noise and supplement some missing high frequency information. By concatenating two methods, we manage to produce better results in super resolution tasks for infrared images than SRCNN and ScSR. PSNR and SSIM values are used to quantify the performance. Applying our method to open datasets and actual infrared imaging experiments, we also find better visual results are preserved.


2017 ◽  
Vol 76 (23) ◽  
pp. 24871-24902 ◽  
Author(s):  
Xiaomin Yang ◽  
Wei Wu ◽  
Kai Liu ◽  
Weilong Chen ◽  
Ping Zhang ◽  
...  

2020 ◽  
Vol 53 (7-8) ◽  
pp. 1429-1439
Author(s):  
Ziwei Zhang ◽  
Yangjing Shi ◽  
Xiaoshi Zhou ◽  
Hongfei Kan ◽  
Juan Wen

When low-resolution face images are used for face recognition, the model accuracy is substantially decreased. How to recover high-resolution face features from low-resolution images precisely and efficiently is an essential subtask in face recognition. In this study, we introduce shuffle block SRGAN, a new image super-resolution network inspired by the SRGAN structure. By replacing the residual blocks with shuffle blocks, we can achieve efficient super-resolution reconstruction. Furthermore, by considering the generated image quality in the loss function, we can obtain more realistic super-resolution images. We train and test SB-SRGAN in three public face image datasets and use transfer learning strategy during the training process. The experimental results show that shuffle block SRGAN can achieve desirable image super-resolution performance with respect to visual effect as well as the peak signal-to-noise ratio and structure similarity index method metrics, compared with the performance attained by the other chosen deep-leaning models.


2018 ◽  
Vol 46 (5) ◽  
pp. 838-858 ◽  
Author(s):  
Xiaomin Yang ◽  
Wei Wu ◽  
Binyu Yan ◽  
Huiqian Wang ◽  
Kai Zhou ◽  
...  

2020 ◽  
Vol 107 ◽  
pp. 103314
Author(s):  
Tingting Yao ◽  
Yu Luo ◽  
Jincheng Hu ◽  
Haibo Xie ◽  
Qing Hu

Sign in / Sign up

Export Citation Format

Share Document