scholarly journals Power Equipment Defects Prediction Based on the Joint Solution of Classification and Regression Problems Using Machine Learning Methods

Electronics ◽  
2021 ◽  
Vol 10 (24) ◽  
pp. 3145
Author(s):  
Ivan Shcherbatov ◽  
Evgeny Lisin ◽  
Andrey Rogalev ◽  
Grigory Tsurikov ◽  
Marek Dvořák ◽  
...  

Our paper proposes a method for constructing a system for predicting defects and failures of power equipment and the time of their occurrence based on the joint solution of regression and classification problems using machine learning methods. A distinctive feature of this method is the use of the equipment’s technical condition index as an informative parameter. The results of calculating and visualizing the technical condition index in relation to the electro-hydraulic automatic control system of hydropower turbine when predicting the defect “clogging of drainage channels” showed that its determination both for an equipment and for a group of its functional units allows one to quickly and with the required accuracy assess the arising technological disturbances in the operation of power equipment. In order to predict the behavior of the technical condition index of the automatic control system of the turbine, the optimal tuning of the LSTM model of the recurrent neural network was developed and carried out. The result of the application of the model was the forecast of the technical condition index achievement and the limiting characteristic according to the current time data on its values. The developed model accurately predicted the behavior of the technical condition index at time intervals of 3 and 10 h, which made it possible to draw a conclusion about its applicability for early identification of the investigated defect in the automatic control system of the turbine. Thus, we can conclude that the joint solution of regression and classification problems using an information parameter in the form of a technical condition index allows one to develop systems for predicting defects, one significant advantage of which is the ability to early determine the development of degradation phenomena in power equipment.

2003 ◽  
Vol 3 ◽  
pp. 297-307
Author(s):  
V.V. Denisov

An approach to the study of the stability of non-linear multiply connected systems of automatic control by means of a fast Fourier transform and the resonance phenomenon is considered.


Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1257
Author(s):  
Alexey Dorokhov ◽  
Alexander Aksenov ◽  
Alexey Sibirev ◽  
Nikolay Sazonov ◽  
Maxim Mosyakov ◽  
...  

The roller and sieve machines most commonly used in Russia for the post-harvest processing of root and tuber crops and onions have a number of disadvantages, the main one being a decrease in the quality of sorting due to the contamination of working bodies, which increases the quantity of losses during sorting and storage. To obtain high-quality competitive production, it is necessary to combine a number of technological operations during the sorting process, such as dividing the material into classes and fractions by quality and size, as well as identifying and removing damaged products. In order to improve the quality of sorting of root tubers and onions by size, it is necessary to ensure the development of an automatic control system for operating and technological parameters, the use of which will eliminate manual sorting on bulkhead tables in post-harvest processing. To fulfill these conditions, the developed automatic control system must have the ability to identify the material on the sorting surface, taking into account external damage and ensuring the automatic removal of impurities. In this study, the highest sorting accuracy of tubers (of more than 91%) was achieved with a forward speed of 1.2 m/s for the conveyor of the sorting table, with damage to 2.2% of the tubers, which meets the agrotechnical requirements for post-harvest processing. This feature distinguishes the developed device from similar ones.


2021 ◽  
Vol 1864 (1) ◽  
pp. 012039
Author(s):  
B. G. Ilyasov ◽  
G.A. Saitova ◽  
A.V. Elizarova

Sign in / Sign up

Export Citation Format

Share Document