scholarly journals A Blockchain-Based Authentication Protocol Using Cryptocurrency Technology in LEO Satellite Networks

Electronics ◽  
2021 ◽  
Vol 10 (24) ◽  
pp. 3151
Author(s):  
Xia Deng ◽  
Junbin Shao ◽  
Le Chang ◽  
Junbin Liang

With the rapid development of satellite technology and the high transmission efficiency of LEO satellites, LEO satellite communication has received increasing attention. However, the frequent switching of satellite-earth links imposes a great challenge in LEO communication authentication. To tackle this challenge, this paper proposes a Blockchain-based Authentication Protocol Using Cryptocurrency Technology (BAPC), which solves the problem of a long pause time of satellite services caused by user access authentication in a scenario of frequent switching between satellites and ground users. First, we design three stages of the authentication process and introduce the cryptocurrency technology. Using currency transactions as the certificate of authentication improves not only the security of authentication, but also the efficiency of switching authentication. Next, in the network topology, the satellite cluster is divided into multiple regions to improve the efficiency of block consensus. Finally, the protocol is tested through extensive NS2-based simulations, and the results verify that BAPC can greatly shorten the response time of switching authentication and significantly reduce the time of block generation and the network throughput. As the number of users increases, the block generation time and network throughput can be further reduced.

2021 ◽  
Vol 13 (6) ◽  
pp. 168781402110284
Author(s):  
Weikang Kong ◽  
Jixin Wang ◽  
Dewen Kong ◽  
Yuanying Cong ◽  
Shuangshi Feng

With the rapid development of the world economic construction and the shortage of energy, it has become a hot research issue to realize the electrification of the vehicle driving system and improve energy efficiency. Most of the electric construction machinery power systems are characterized by low speed and high load. The coordinated driving of multiple motors can increase the output torque and improve the transmission efficiency of the machine on the basis of a compact layout. A novel configuration of electric construction vehicles based on multi-motor and single-speed and its driving torque distribution control method is presented in this paper. The detailed mathematical model is established and the simulation analysis is carried out based on it. The results show that the proposed multi-motor driving system with the control strategy can improve the overall efficiency in the condition of ensuring the driving force when the parameter matching and motors choosing reasonably.


2021 ◽  
Vol 13 (4) ◽  
pp. 703
Author(s):  
Lvyang Ye ◽  
Yikang Yang ◽  
Xiaolun Jing ◽  
Jiangang Ma ◽  
Lingyu Deng ◽  
...  

With the rapid development of satellite technology and the need to satisfy the increasing demand for location-based services, in challenging environments such as indoors, forests, and canyons, there is an urgent need to improve the position accuracy in these environments. However, traditional algorithms obtain the position solution through time redundancy in exchange for spatial redundancy, and they require continuous observations that cannot satisfy the real-time location services. In addition, they must also consider the clock bias between the satellite and receiver. Therefore, in this paper, we provide a single-satellite integrated navigation algorithm based on the elimination of clock bias for broadband low earth orbit (LEO) satellite communication links. First, we derive the principle of LEO satellite communication link clock bias elimination; then, we give the principle and process of the algorithm. Next, we model and analyze the error of the system. Subsequently, based on the unscented Kalman filter (UKF), we model the state vector and observation vector of our algorithm and give the state and observation equations. Finally, for different scenarios, we conduct qualitative and quantitative analysis through simulations, and the results show that, whether in an altimeter scenario or non-altimeter scenario, the performance indicators of our algorithm are significantly better than the inertial navigation system (INS), which can effectively overcome the divergence problem of INS; compared with the medium earth orbit (MEO) constellation, the navigation trajectory under the LEO constellation is closer to the real trajectory of the aircraft; and compared with the traditional algorithm, the accuracy of each item is improved by more than 95%. These results show that our algorithm not only significantly improves the position error, but also effectively suppresses the divergence of INS. The algorithm is more robust and can satisfy the requirements of cm-level real-time location services in challenging environments.


Author(s):  
Roman Semernya ◽  
Shi Xueliang ◽  
Vladimir Lyashev ◽  
Vadim Revutsky ◽  
Zhou Yue ◽  
...  

2009 ◽  
Vol 59 (1) ◽  
pp. 23-29 ◽  
Author(s):  
C. Ruch ◽  
H. Stadler

The present paper deals with the implementation of online data transferred via LEO satellite communication in a flood forecasting system. Although the project is ongoing, it is already recognised that the information chain: “measurement—transmission—forecast—alert” can be shortened, i.e., the flood danger can be more rapidly communicated to the population at risk. This gain is particularly valuable for medium size catchments where the concentration time (basin time of response to rainfall) is short.


Sign in / Sign up

Export Citation Format

Share Document