scholarly journals Development of a Digitally Controlled Inductive Power Transfer System with Post-Regulation for Variable Load Demand

Electronics ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 58
Author(s):  
Kateryna Stoyka ◽  
Antonio Vitale ◽  
Massimo Costarella ◽  
Alfonso Avella ◽  
Mario Pucciarelli ◽  
...  

Inductive Power Transfer (IPT) is an emerging technology enabling a contactless charging process in manifold applications such as electric vehicles, wearable and portable devices, or biomedical applications. Such technology can be profitably used to develop enhanced electronic solutions in the framework of smart cities, homes and smart workplaces. This paper presents the development and realization of a series–series compensated IPT System (IPTS) followed by a post-regulator implemented by means of a DC–DC converter. Such a system is modeled through a first harmonic approximation method, and a sensitivity analysis of the IPTS performance is carried out with respect to the variations of the primary inverter switching frequency and phase-shift angle. As an element of novelty of this work, the bias points are determined which allow the efficiency maximization while ensuring system controllability. An enhanced dynamic modeling of the system is then performed by means of a coupled mode theory, including the inverter phase-shift modulation and extending its validity to whatever operating frequency. A digital control of the post-regulator is implemented by means of a commercial low-cost microcontroller enabling the output voltage regulation under both fixed and variable load conditions through a voltage mode control technique. An IPTS prototype is eventually realized, which is able to correctly perform the output voltage regulation at the desired nominal value of 12 V for static resistive loads in the range [5,24] Ω, yielding the output power in the range [6, 28.8] W and the experimental efficiencies going from 72.1% (for 24 Ω) to 91.7% (for 5 Ω). The developed system can also be effectively used to deliver up to 35 W output power to variable loads, as demonstrated during the battery charging test. Finally, an excellent output voltage regulation is ascertained for load transients between 5 Ω and 24 Ω, with limited over- and undershoot amplitudes (less than 3% of the nominal output voltage), thus enabling the use of the proposed system for both fixed and variable loads in the framework of smart homes and workplaces applications.

Energies ◽  
2019 ◽  
Vol 12 (2) ◽  
pp. 312 ◽  
Author(s):  
Sangjoon Ann ◽  
Woo-Young Lee ◽  
Gyu-Yeong Choe ◽  
Byoung Kuk Lee

An inductive power transfer (IPT) system has lower peak efficiency and significantly lower load-average efficiency over the entire range of output power than typical power conversion systems because it transmits power wirelessly through magnetically coupled coils. In order to improve the load-average efficiency of the IPT system, this paper proposes an integrated control strategy consisting of full-bridge, phase-shift, and half-bridge control modes. The coupling coefficient and output power conditions for each control mode are theoretically analyzed, and the proposed control algorithm is established. In order to verify the analysis results, a 3.3 kW IPT system prototype is constructed, and it is experimentally verified that the load-average efficiency is improved by up to 3.75% with respect to the output power when using the proposed control scheme. In addition, the proposed control has the additional advantage that it can be directly applied to the existing IPT system without changing or adding hardware.


2018 ◽  
Vol 29 (2) ◽  
pp. 250-258 ◽  
Author(s):  
R. W. Porto ◽  
S. Haffner ◽  
M. A. J. Coelho ◽  
V. J. Brusamarello ◽  
I. Müller ◽  
...  

2019 ◽  
Vol 14 (6) ◽  
pp. 2409-2419
Author(s):  
Jongeun Byun ◽  
Minkook Kim ◽  
Dongmyoung Joo ◽  
Woo-Young Lee ◽  
Gyu-Yeong Choe ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document