scholarly journals High-Performance RF Balanced Microstrip Mixer Configuration for Cryogenic and Room Temperatures

Electronics ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 102
Author(s):  
Noy Citron ◽  
Eldad Holdengreber ◽  
Oz Sorkin ◽  
Shmuel E. Schacham ◽  
Eliyahu Farber

A high-performance S-band down-conversion microstrip mixer, for operation from 77 K to 300 K, is described. The balanced mixer combines a 90 degree hybrid coupler, two Schottky diodes, a band pass filter, and a low pass filter. The coupler phase shift drastically improves noise rejection. The circuit was implemented according to the configuration obtained from extensive simulation results based on electromagnetic analysis. The experimental results agreed well with the simulation results, showing a maximum measured insertion loss of 0.4 dB at 2 GHz. The microstrip mixer can be easily adjusted to different frequency ranges, up to about 50 GHz, through the proper choice of microstrip configuration. This novel S-band cryogenic mixer, implemented without resorting to special components, shows a very high performance at liquid nitrogen temperatures, making this mixer very suitable for high-temperature superconductive applications, such as front-ends.

This paper presents a voltage-mode(VM) tunable multifunction inverse filter configuration employing current differencing buffered amplifiers (CDBA). The presented structure utilizes two CDBAs, two/three capacitors and four/five resistors to realize inverse low pass filter (ILPF), inverse high pass filter (IHPF), inverse band pass filter (IBPF), and inverse band reject filter(IBRF) from the same circuit topology by suitable selection(s) of the branch admittances(s). PSPICE simulations have been performed with 0.18µm TSMC CMOS technology to validate the theory. Some sample experimental results have also been provided using off-the-shelf IC AD844 based CDBA.


2014 ◽  
Vol 2014 ◽  
pp. 1-6
Author(s):  
Lanyong Zhang ◽  
Yixuan Du ◽  
Bing Li

Multiple carrier frequency detecting signals are transmitted simultaneously by multiple transmitters in multistatic sonar. The echoes mixed with different carrier frequency in the receiver. The different carrier frequency echoes must be separated from one another before features of echoes are extracted in the receiver. Such a problem can be solved by band-pass and low-pass filters. But the amount of operation by this way is too large for real-time realization. Thus this paper presents the technique of channelized receiver based on multiphase filter and the receiving schemes of echo. The proposed receiver has a smaller amount of operation compared to low-pass filter. At last, the feature extraction technology correlation processing and FDWT are introduced. In order to verify the feasibility of this scheme in multistatic sonar, the extracted features of original echo are contrasted with those of processed echo via simulation. Simulation results show that the proposed receiver provides considerable performance.


2021 ◽  
Author(s):  
Ara Abdulsatar Assim Assim

This paper demonstrates the design and implementation of an inductorless analog band-pass filter (BPF). Band-pass filters are widely used in communication systems, wireless transceivers and audio systems, they only pass signals within a desired frequency range. The principles mentioned in this article can be generalized to design any analog filter regardless of its order, approximation and prototype. The design procedure can be broken down into three main parts, first of all, a passive low-pass filter (LPF) is implemented, then the passive LPF is converted into a passive BPF. Finally, the passive BPF is transformed into an active BPF by adding operational amplifiers. The active BPF is then modified into two different topologies, the first in which the inductors are replaced with simulated- inductors (gyrators), while in the second topology, less operational amplifiers are used. <br>


Author(s):  
RENDY DWI RENDRAGRAHA ◽  
GELAR BUDIMAN ◽  
IRMA SAFITRI

ABSTRAKAudio watermarking adalah teknik memasukkan informasi ke dalam file audio dan untuk melindungi hak cipta data digital dari distribusi ilegal. Makalah ini memperkenalkan audio stereo watermarking berdasarkan Quantization Index Modulation (QIM) dengan teknik gabungan Discrete Cosine Transform (DCT) - QRCartesian Polar Transform (CPT). Host audio dibagi menjadi beberapa frame, selanjutnya setiap frame ditransformasi oleh DCT, kemudian output DCT diuraikan menjadi matriks orthogonal dan matriks segitiga menggunakan metode QR. Selanjutnya, CPT mengubah dua koefisien kartesian dari matriks segitiga (R) pada posisi (1,1) dan (2,2) menjadi koefisien polar. Setelah itu, penyisipan dilakukan pada koefisien polar oleh QIM. Hasil simulasi menunjukkan bahwa imperseptibilitas audio terwatermark berkualitas baik dengan Signal to Noise Ratio (SNR)> 20, Mean Opinion Score (MOS)> 4 dan tahan terhadap serangan seperti Low Pass Filter (LPF) dan Band Pass Filter (BPF) dengan cut off 25-6k, resampling, Linear Speed Change (LSC) dan MP3 Compression dengan rate diatas 64 kbps.Kata kunci: Audio Watermarking, CPT, DCT, QIM, QR ABSTRACTAudio watermarking is a technique for inserting information into an audio file and to protect the copyright of digital data from illegal distribution. This paper introduces a stereo audio watermarking based on Quantization Index Modulation (QIM) with combined technique Discrete Cosine Transform (DCT) – QR – Cartesian Polar Transform (CPT). Each frame of a host audio is transformed by DCT, then DCT output is decomposed using QR method. Next, CPT transform two cartesian coefficients from triangular matrix (R) in position (1,1) and (2,2) to polar coefficients. After that, embedding is executed on polar coefficients by QIM. The simulation result shows that the imperceptibility is good with Signal to Noise Ratio (SNR)>20, Mean Opinion Score (MOS)>4 and it is robust against attacks such as Low Pass Filter (LPF) and Band Pass Filter (BPF) with cut off 25-6k, Resampling, Linear Speed Change and MP3 Compression with rate 64 kbps and above. Keywords: Audio Watermarking, CPT, DCT, QIM, QR


2011 ◽  
Vol 1321 ◽  
Author(s):  
M. A. Vieira ◽  
M. Vieira ◽  
P. Louro ◽  
M. Fernandes ◽  
J. Costa ◽  
...  

ABSTRACTThis paper reports results on the use of a pi’n/pin a-SiC:H heterostructure as an active band-pass filter transfer function whose operation depends on the wavelength of the trigger light, on the applied voltage and on the wavelength of the additional optical bias.Results show that the device combines the demultiplexing operation with the simultaneous photodetection and self amplification of the signal. Experimental and simulated results show that the output signal has a strong nonlinear dependence on the light absorption profile. The device, modeled by a simple circuit with variable capacitors and interconnected phototransistors through a resistor, is a current-controlled device. It uses a changing capacitance to control the power delivered to the load acting as a state variable filter circuit. It combines the properties of active high-pass and low-pass filter sections into a capacitive active band-pass filter.


Author(s):  
RUSTAMAJI RUSTAMAJI ◽  
ARSYAD RAMADHAN DARLIS ◽  
SOLIHIN SUPARMAN

ABSTRAKDalam suatu sistem komunikasi penggunaan rangkaian filter sangat penting. Salah satu cara untuk memudahkan dalam perancangan sebuah filter dilakukanlah teknik simulasi. Penelitian ini bertujuan untuk merancang simulasi yang menghasilkan respon filter jenis chebyshev serta menghasilkan nilai komponen induktor (L) dan kapasitor (C) yang dibutuhkan untuk merangkai filter. Simulasi yang dirancang pada penelitian ini menggunakan Graphical User Interface (GUI). Dari simulasi yang dilakukan, didapatkan respon Chebyshev pada low pass filter, high pass filter, band pass filter, dan band stop filter sudah sesuai dengan input yang dimasukkan ke dalam parameter program dan sesuai dengan teori respon filter Chebyshev. Hasil Simulasi dari rangkaian band pass filter dan band stop filter dengan menggunakan Electronic Workbench (EWB), menunjukkan respon dengan pergeseran frekuensi sebesar 0,1 kHz lebih tinggi dari frekuensi yang diharapkan.Kata Kunci: filter, Chebyshev, band, respon frekuensi. ABSTRACTOn communication system using filter is very important. One way to simplify the design of filter undertaken a simulation technique. This research aims to design a simulation that generates the filter response of chebyshev and generate the value component of the inductor (L) and capacitor (C) that needed for constructing the filter. This Simulation using Graphical User Interface (GUI). From result simulation, response in low pass filter, high pass filter, band pass filter, band stop filter and is in compliance with the input entered into the program and in accordance with the theory of Chebyshev filter response. The simulation of the band pass filter and bands stop filter by using electronic workbench ( EWB ), show a response with shifts frequency of 0.1 khz higher than frequency expected.Keywords: filter, Chebyshev, band, frequency respons


2020 ◽  
Vol 12 (1) ◽  
pp. 75-78
Author(s):  
Kanchan Sengar ◽  
Arun Kumar

Background: Fractional order Butterworth and Chebyshev (low-pass filter circuits, highpass filter circuits and band-pass filters circuits) types of first and second order filter circuits have been simulated and their transfer function are derived. The effect of change of the fractional order α on the behavior of the circuits is investigated. Objective: This paper presents the use of fractional order capacitor in active filters. The expressions for the magnitude, phase, the quality factor, the right-phase frequencies, and the half power frequencies are derived and compared with their previous counterpart. Methods: The circuits have been simulated using Orcad as well as MATLAB for the different value of α. We have developed the fractional gain and phase equations for low pass filter circuits, high pass filter circuits and band pass filter circuits in Sallen-Key topology. Results: It is observed that the bandwidth increases significantly with fractional order other than unity for the low pass as well as high pass and band pass filters. Conclusion: We have also seen that in the frequency domain, the magnitude and phase plots in the stop band change nearly linearly with the fractional order. If we compare the fractional Butterworth filters for low-pass and high-pass type with conventional filters then we find that the roll-off rate is equal to the next higher order filter.


Sign in / Sign up

Export Citation Format

Share Document