scholarly journals Intermittent Renewable Energy Sources: The Role of Energy Storage in the European Power System of 2040

Electronics ◽  
2019 ◽  
Vol 8 (7) ◽  
pp. 729 ◽  
Author(s):  
Henrik Zsiborács ◽  
Nóra Hegedűsné Baranyai ◽  
András Vincze ◽  
László Zentkó ◽  
Zoltán Birkner ◽  
...  

Global electricity demand is constantly growing, making the utilization of solar and wind energy sources, which also reduces negative environmental effects, more and more important. These variable energy sources have an increasing role in the global energy mix, including generating capacity. Therefore, the need for energy storage in electricity networks is becoming increasingly important. This paper presents the challenges of European variable renewable energy integration in terms of the power capacity and energy capacity of stationary storage technologies. In this research, the sustainable transition, distributed generation, and global climate action scenarios of the European Network of Transmission System Operators for 2040 were examined. The article introduces and explains the feasibility of the European variable renewable energy electricity generation targets and the theoretical maximum related to the 2040 scenarios. It also explains the determination of the storage fractions and power capacity in a new context. The aim is to clarify whether it is possible to achieve the European variable renewable energy integration targets considering the technology-specific storage aspects. According to the results, energy storage market developments and regulations which motivate the increased use of stationary energy storage systems are of great importance for a successful European solar and wind energy integration. The paper also proves that not only the energy capacity but also the power capacity of storage systems is a key factor for the effective integration of variable renewable energy sources.

2017 ◽  
Vol 68 (11) ◽  
pp. 2641-2645
Author(s):  
Alexandru Ciocan ◽  
Ovidiu Mihai Balan ◽  
Mihaela Ramona Buga ◽  
Tudor Prisecaru ◽  
Mohand Tazerout

The current paper presents an energy storage system that stores the excessive energy, provided by a hybrid system of renewable energy sources, in the form of compressed air and thermal heat. Using energy storage systems together with renewable energy sources represents a major challenge that could ensure the transition to a viable economic future and a decarbonized economy. Thermodynamic calculations are conducted to investigate the performance of such systems by using Matlab simulation tools. The results indicate the values of primary and global efficiencies for various operating scenarios for the energy storage systems which use compressed air as medium storage, and shows that these could be very effective systems, proving the possibility to supply to the final user three types of energy: electricity, heat and cold function of his needs.


Energies ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 317 ◽  
Author(s):  
Jagdesh Kumar ◽  
Chethan Parthasarathy ◽  
Mikko Västi ◽  
Hannu Laaksonen ◽  
Miadreza Shafie-Khah ◽  
...  

The stringent emission rules set by international maritime organisation and European Directives force ships and harbours to constrain their environmental pollution within certain targets and enable them to employ renewable energy sources. To this end, harbour grids are shifting towards renewable energy sources to cope with the growing demand for an onshore power supply and battery-charging stations for modern ships. However, it is necessary to accurately size and locate battery energy storage systems for any operational harbour grid to compensate the fluctuating power supply from renewable energy sources as well as meet the predicted maximum load demand without expanding the power capacities of transmission lines. In this paper, the equivalent circuit battery model of nickel–cobalt–manganese-oxide chemistry has been utilised for the sizing of a lithium-ion battery energy storage system, considering all the parameters affecting its performance. A battery cell model has been developed in the Matlab/Simulink platform, and subsequently an algorithm has been developed for the design of an appropriate size of lithium-ion battery energy storage systems. The developed algorithm has been applied by considering real data of a harbour grid in the Åland Islands, and the simulation results validate that the sizes and locations of battery energy storage systems are accurate enough for the harbour grid in the Åland Islands to meet the predicted maximum load demand of multiple new electric ferry charging stations for the years 2022 and 2030. Moreover, integrating battery energy storage systems with renewables helps to increase the reliability and defer capital cost investments of upgrading the ratings of transmission lines and other electrical equipment in the Åland Islands grid.


Author(s):  
Ricardo Ramos ◽  
Rui Castro

Abstract The main goal of this work is to study the role of energy storage in the context of the Portuguese power system by the year 2030. Portugal is one of the countries in the world with more installed energy storage capacity, namely pumped hydro storage (PHS). The simulations are performed with energyplan tool and allow us to predict the energy mix in Portugal by the year 2030; to forecast the utilization of the storage capacity, namely projections for the energy produced by PHS; to estimate CO2 emissions and percentage of renewable energy sources (RES) utilization; to assess the necessary storage capacity to avoid renewable curtailment; and to evaluate the future needs of installing further storage capacity, either with more PHS capacity or with the introduction of batteries. PHS revealed that it is important to avoid the curtailment of renewable energy, especially in a scenario of higher RES shares. It is shown that the increase in RES contribution would decrease the overall costs of the system, leading to thinking that further efforts should be made to increase the RES installed capacity and go beyond the official RES predictions for 2030. It is also concluded that the predicted storage capacity for 2030 can accommodate the expected increase in variable renewable generation without any further need for investments in PHS or battery solutions.


Sign in / Sign up

Export Citation Format

Share Document