scholarly journals Framework for Delay Guarantee in Multi-Domain Networks Based on Interleaved Regulators

Electronics ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 436
Author(s):  
Jinoo Joung

The key to the asynchronous traffic shaping (ATS) technology being standardized in IEEE 802.1 time sensitive network (TSN) task group (TG) is the theorem that a minimal interleaved regulator (IR), attached to a FIFO system does not increase delay upper bound while suppresses the burst accumulation. In this work it is observed that the FIFO system can be a network for flows that share same input/output ports and same queues of the network, and are treated with a scheduling scheme that guarantees the FIFO property within a queue. Based on this observation, a framework for delay bound guarantee is further proposed, in which the networks with flow aggregates (FAs) scheduling and minimal IRs per FA attached at the network edge are interconnected. The framework guarantees the end-to-end delay bound with reduced complexity, compared to the traditional flow-based approach. Numerical analysis shows that the framework yields smaller bound than both the flow-based frameworks such as the integrated services (IntServ) and the class-based ATS, at least in the networks with identical flows and symmetrical topology.


Author(s):  
Francesco Lucrezia ◽  
Guido Marchetto ◽  
Fulvio Risso ◽  
Michele Santuari ◽  
Matteo Gerola

This paper describes a framework application for the control plane of a network infrastructure; the objective is to feature end-user applications with the capability of requesting at any time a customised end-to-end Quality-of-Service profile in the context of dynamic Service-Level-Agreements. Our solution targets current and future real-time applications that require tight QoS parameters, such as a guaranteed end-to-end delay bound. These applications include, but are not limited to, health-care, mobility, education, manufacturing, smart grids, gaming and much more. We discuss the issues related to the previous Integrated Service and the reason why the RSVP protocol for guaranteed QoS did not take off. Then we present a new signaling and resource reservation framework based on the cutting-edge network controller ONOS.  Moreover, the presented system foresees the need of considering the edges of the network, where terminal applications are connected to, to be piloted by distinct logically centralised controllers. We discuss a possible inter-domain communication mechanism to achieve the end-to-end QoS guarantee.



Author(s):  
Mohamed Aissa ◽  
Adel Ben Mnaouer ◽  
Rion Murray ◽  
Abdelfettah Belghith

Multimedia applications are expected to guarantee end-to-end quality of service (QoS) and are characterized by stringent constraints on delay, delay-jitter, bandwidth, cost, and so forth. The authors observe that Kruskal’s algorithm is limited to minimal (maximal) spanning unconstrained tree. As such, the authors extend Kruskal’s algorithm to incorporate the delay bound constraint. Consequently, a novel algorithm is proposed, called EKRUS (Extended Kruskal), for constructing multicast trees. The EKRUS’ distinguishing features consists of a better management of Kruskal’s priority queues, and in the provision of edge priority aggregation. Preliminary results show that the proposed EKRUS algorithm performs as well as the best-known algorithms (such as the DDMC, DMCTc algorithms) while exhibiting reduced complexity. The authors conducted an intensive analysis and evaluations of different strategies of assigning edges into the classes of the queue as well as edge selection. As a result, the EKRUS algorithm was further extended with different edge assignment and selection strategies. Through extensive simulations, the authors have evaluated various versions of the EKRUS and analyzed their performance under different load conditions.



Mathematics ◽  
2021 ◽  
Vol 9 (14) ◽  
pp. 1638
Author(s):  
Benedetta Picano

The emerging sixth-generation networks have to provide effective support to a wide plethora of novel disruptive heterogeneous applications. This paper models the probabilistic end-to-end delay bound for the virtual reality services in the presence of heterogeneous traffic flows by resorting to the stochastic network calculus principles and exploiting the martingale envelopes. The paper presents the network performance analysis under the assumption of different scheduling policies, considering both the earliest deadline first and the first-in-first-out queue discipline. Furthermore, differently from previous literature, the probabilistic per-flow bounds have been formulated taking into account a number of traffic flows greater than two, which results in a theoretical analysis that is remarkably more complex than the case in which only two concurrent flows are considered. Finally, the validity of the theoretical bounds have been confirmed by the evident closeness between the analytical predictions and the actual simulation results considering, for the sake of argument, four concurrent traffic flows with heterogeneous quality-of-service constraints. That closeness exhibits the ability of the proposed analysis in fitting the actual behavior of the system, representing a suitable theoretical tool to support resource allocation strategies, without violating service constraints.





Sign in / Sign up

Export Citation Format

Share Document