scholarly journals A Proposal for End-to-End QoS Provisioning in Software-Defined Networks

Author(s):  
Francesco Lucrezia ◽  
Guido Marchetto ◽  
Fulvio Risso ◽  
Michele Santuari ◽  
Matteo Gerola

This paper describes a framework application for the control plane of a network infrastructure; the objective is to feature end-user applications with the capability of requesting at any time a customised end-to-end Quality-of-Service profile in the context of dynamic Service-Level-Agreements. Our solution targets current and future real-time applications that require tight QoS parameters, such as a guaranteed end-to-end delay bound. These applications include, but are not limited to, health-care, mobility, education, manufacturing, smart grids, gaming and much more. We discuss the issues related to the previous Integrated Service and the reason why the RSVP protocol for guaranteed QoS did not take off. Then we present a new signaling and resource reservation framework based on the cutting-edge network controller ONOS.  Moreover, the presented system foresees the need of considering the edges of the network, where terminal applications are connected to, to be piloted by distinct logically centralised controllers. We discuss a possible inter-domain communication mechanism to achieve the end-to-end QoS guarantee.

Author(s):  
Eng Hwee Ong ◽  
Jamil Y. Khan

In recent years, vertical handover (VHO) has been identified as the primary vehicle to provision seamless mobility and quality of service (QoS) transparency for end-user in composite network. This allows end-user to enjoy ubiquitous connectivity in the most efficient way, irrespective of time and place, commonly known as always best connected. In this chapter, the authors introduce the notion of cognitive cooperation as a means to provide optimized VHO opportunistically in order to exploit the inherent heterogeneity that exists within such composite network to improve radio resource usage. Through the cognitive cooperation, the chapter proposes a distributed load adaptation strategy (LAS) framework which exploits the benefits of joint optimization, particularly between link adaptation and load adaptation on-demand. The authors advocate that such synergetic interactions between the physical layer (PHY) and medium access control (MAC) layer have advantages over the PHY approach based only on link adaptation. Comprehensive performance analyses show that the LAS framework arbitrates a QoS-balanced system in which statistical QoS guarantee for multimedia traffic can be provisioned and overall system capacity can be maximized.


Mathematics ◽  
2021 ◽  
Vol 9 (14) ◽  
pp. 1638
Author(s):  
Benedetta Picano

The emerging sixth-generation networks have to provide effective support to a wide plethora of novel disruptive heterogeneous applications. This paper models the probabilistic end-to-end delay bound for the virtual reality services in the presence of heterogeneous traffic flows by resorting to the stochastic network calculus principles and exploiting the martingale envelopes. The paper presents the network performance analysis under the assumption of different scheduling policies, considering both the earliest deadline first and the first-in-first-out queue discipline. Furthermore, differently from previous literature, the probabilistic per-flow bounds have been formulated taking into account a number of traffic flows greater than two, which results in a theoretical analysis that is remarkably more complex than the case in which only two concurrent flows are considered. Finally, the validity of the theoretical bounds have been confirmed by the evident closeness between the analytical predictions and the actual simulation results considering, for the sake of argument, four concurrent traffic flows with heterogeneous quality-of-service constraints. That closeness exhibits the ability of the proposed analysis in fitting the actual behavior of the system, representing a suitable theoretical tool to support resource allocation strategies, without violating service constraints.


The wireless body area network is one of effective wearable devices that have been used in medical applications for collecting patient information to providing the treatment incorrect time for avoiding seriousness. The collected data’s such as blood pressure, air flow, temperature, electromagnetic information is transmitted to the health care center via the wireless technology, which reduces the difficulties also helps to provide the immediate treatment. During the information transmission, the main issues are Quality of Service (QoS), low packet delivery, high energy consumption and end to end delay. So, in this paper introduces the Fireflies Ant Optimized, Reliable Quality Awareness, Energy Efficient Routing Protocol ((FAORQEER) for maintaining the quality of the recorded medical data. The network examines the optimal path by using the characteristics of fireflies and the network life time and energy of the network is managed by introducing an energy efficient method. The process then evaluates efficiency with test results about energy consumption, packet delivery ratio, end to end delay and QoS metric associated constraints.


Author(s):  
Manoj Kumar Patel ◽  
MANAS RANJAN KABAT ◽  
Chita Ranjan Tripathy

Many multimedia group applications require the construction of multicast tree satisfying the quality of service (QoS) requirements. To support real time communication, computer networks need to optimize the Delay and Delay-Variation Bounded Multicast Tree (DVBMT). The problem is to satisfy the end-to-end delay and delay-variation within an upper bound. The DVBMT problem is known to be NP complete. In this paper, we propose an efficient core selection algorithm for satisfying the end-to-end delay and delay-variation within an upper bound. The efficiency of the proposed algorithm is validated through the simulation. The simulation results reveal that our algorithm performs better than the existing heuristic algorithms.


Author(s):  
R. Asokan ◽  
A.M. Natarajan

Mobile adhoc network (MANET) is a collection of mobile devices which form a communication network with no pre-existing wiring or infrastructure. Multiple routing protocols have been developed for MANETs. As MANETs gain popularity, their need to support real time applications is growing as well. Quality of service(QoS) provisioning is becoming a critical issue in designing mobile adhoc networks due to the necessity of providing multimedia applications.These applications have stringent QoS requirements such as throughput, end-to-end delay, and energy. Due to dynamic topology and bandwidth constraint supporting QoS is a challenging task. QoS aware routing is an important building block for QoS support. The primary goal of the QoS aware protocol is to determine the path from source to destination that satisfies the QoS requirements. This article proposes a new energy and delay aware protocols called, energy and delay aware Adhoc On demand Distance Vector Routing (EDAODV) and energy and delay aware Dynamic Source Routing(EDDSR) based on extension of AODV and DSR. Simulation results show that the proposed protocols have a better performance than AODV and DSR in terms of energy, packet delivery ratio and end-to-end delay.


Sign in / Sign up

Export Citation Format

Share Document