scholarly journals Role of Big Data in the Development of Smart City by Analyzing the Density of Residents in Shanghai

Electronics ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 837 ◽  
Author(s):  
Saqib Ali Haidery ◽  
Hidayat Ullah ◽  
Naimat Ullah Khan ◽  
Kanwal Fatima ◽  
Sanam Shahla Rizvi ◽  
...  

In recent decades, a large amount of research has been carried out to analyze location-based social network data to highlight their application. These location-based social network datasets can be used to propose models and techniques that can analyze and reproduce the spatiotemporal structures and symmetries in user activities as well as density estimations. In the current study, different density estimation techniques are utilized to analyze the check-in frequency of users in more detail from location-based social network dataset acquired from Sina-Weibo, also referred as Weibo, over a specific period in 10 different districts of Shanghai, China. The aim of this study is to analyze the density of users in Shanghai city from geolocation data of Weibo as well as to compare their density through univariate and bivariate density estimation techniques; i.e., point density and kernel density estimation (KDE) respectively. The main findings of the study include the following: (i) characteristics of users’ spatial behavior, the center of activity based on their check-ins, (ii) the feasibility of check-in data to explain the relationship between users and social media, and (iii) the presentation of evident results for regulatory or managing authorities for urban planning. The current study shows that the point density and kernel density estimation. KDE methods provide useful insights for modeling spatial patterns using geo-spatial dataset. Finally, we can conclude that, by utilizing the KDE technique, we can examine the check-in behavior in more detail for an individual as well as broader patterns in the population as a whole for the development of smart city. The purpose of this article is to figure out the denser places so that the authorities can divide the mobility of people from the same routes or at least they can control the situation from any further inconvenience.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Wenzhong Shi ◽  
Chengzhuo Tong ◽  
Anshu Zhang ◽  
Bin Wang ◽  
Zhicheng Shi ◽  
...  

A Correction to this paper has been published: https://doi.org/10.1038/s42003-021-01924-6





2021 ◽  
Vol 13 (1) ◽  
pp. 796-806
Author(s):  
Zhen Shuo ◽  
Zhang Jingyu ◽  
Zhang Zhengxiang ◽  
Zhao Jianjun

Abstract Understanding the risk of grassland fire occurrence associated with historical fire point events is critical for implementing effective management of grasslands. This may require a model to convert the fire point records into continuous spatial distribution data. Kernel density estimation (KDE) can be used to represent the spatial distribution of grassland fire occurrences and decrease the influences historical records in point format with inaccurate positions. The bandwidth is the most important parameter because it dominates the amount of variation in the estimation of KDE. In this study, the spatial distribution characteristic of the points was considered to determine the bandwidth of KDE with the Ripley’s K function method. With high, medium, and low concentration scenes of grassland fire points, kernel density surfaces were produced by using the kernel function with four bandwidth parameter selection methods. For acquiring the best maps, the estimated density surfaces were compared by mean integrated squared error methods. The results show that Ripley’s K function method is the best bandwidth selection method for mapping and analyzing the risk of grassland fire occurrence with the dependent or inaccurate point variable, considering the spatial distribution characteristics.



2020 ◽  
Vol 91 ◽  
pp. 106250 ◽  
Author(s):  
Sarah Itani ◽  
Fabian Lecron ◽  
Philippe Fortemps


Sign in / Sign up

Export Citation Format

Share Document