scholarly journals A Novel Image Encryption Scheme Based on 2D Fractional Chaotic Map, DWT and 4D Hyper-chaos

Electronics ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 1280 ◽  
Author(s):  
Lina Ding ◽  
Qun Ding

In this paper, a novel image encryption scheme based on a fractional-order Henon chaotic map, a two-dimensional (2D) Discrete Wavelet Transform (DWT) and a four-dimensional (4D) hyperchaotic system is proposed. Firstly, the original image is transformed and scrambled by the 2D DWT, and then the image is shuffled with the fractional-order Henon chaotic time series. Finally, the shuffled image is diffused and encrypted by the 4D hyperchaos system. Through the application of DWT and high-low dimensional chaotic systems, the encryption effect of this algorithm is better than those done by single or ordinary chaotic encryption algorithm, and it has a larger key space and higher security. The experimental tests show that the system has good statistical characteristics, such as histogram analysis, correlation coefficient analysis, key space and key sensitivity, information entropy analysis and so on. The encryption algorithm also passes the relevant security attack tests with good security.

2019 ◽  
Vol 9 (22) ◽  
pp. 4854
Author(s):  
Li-Lian Huang ◽  
Shi-Ming Wang ◽  
Jian-Hong Xiang

This paper proposes a novel tweak-cube color image encryption scheme jointly manipulated by chaos and hyper-chaos. One-dimensional (1D) chaotic maps are effortless to operate, but the key space is relatively small. The hyperchaotic system has complex dynamics properties, which are capable of compensating for the defects of 1D chaotic maps. Thus, we first raise an improved 1D chaotic map with an increased key space. Then, we associate it with a four-dimensional (4D) hyperchaotic system to generate the key streams and further rotate and shift the rows and columns of each component of Red (R), Green (G), and Blue (B) for the color image. The permuting mode is to disturb the original position of the pixels by mimicking the way of twisting the Rubik’s cube. Moreover, the key stream updated by the plain images is also utilized for diffusion and scramble at the bit level. As a consequence, our cryptosystem enhances the security without at the expense of increasing time cost.


2019 ◽  
Vol 29 (09) ◽  
pp. 1950115 ◽  
Author(s):  
Guangfeng Cheng ◽  
Chunhua Wang ◽  
Hua Chen

In recent years, scholars studied and proposed some secure color image encryption algorithms. However, the majority of the published algorithms encrypted red, green and blue (called [Formula: see text], [Formula: see text], [Formula: see text] for short) components independently. In the paper, we propose a color image encryption scheme based on hyperchaotic system and permutation-diffusion architecture. The encryption algorithm utilizes a block permutation which is realized by mixing [Formula: see text], [Formula: see text], [Formula: see text] components to strengthen the dependence of each component. Besides, it can reduce time consumption. Then, the key streams generated by the hyperchaotic system are exploited to diffuse the pixels, the three components affect each other again. And in the diffusion process, we can get two totally different encrypted images even though we change the last pixel because the [Formula: see text] component is diffused in reverse order. The experimental results reveal that our algorithm possesses better abilities of resisting statistical attacks and differential attacks, larger key space, closer information entropy to 8, and faster encryption speed compared with other chaos-based color image encryption algorithms.


2011 ◽  
Vol 341-342 ◽  
pp. 720-724 ◽  
Author(s):  
Wang Sheng Fang ◽  
Lu Lu Wu ◽  
Rong Zhang

One of the main purpose of the watermark preprocessing is to improve the robustness and security. For this reason,this paper presents an image encryption algorithm, which combines position scrambling and gray scrambling scrambled according to Arnold transform.Then all of the pixels of each sub-block are scambled by the algorithm based on Logistic chaotic map.Finally, all of the Pixels are redistributed and scrambled totally.Basing on image location scrambling,it takes advantage of multi-dimensional Arnold transformation and Logistic chaotic map, image gray scrambling is achieved. By histogram analysis,key sensitivity anslysis and correlation analysis of adjacent pixels of the results of the simulation, indicating that the scrambling effect of the algorithm is good,and the key space is large.


Author(s):  
Kirtee Panwar ◽  
Ravindra Kumar Purwar ◽  
Garima Srivastava

This paper proposes an image encryption technique which is fast and secure. The encryption scheme is designed for secure transmission of video surveillance data (keyframes) over insecure network. The image encryption technique employs 1D Sine–Sine system with better chaotic properties than its seed map and faster than higher-dimensional chaotic systems. Further, design of encryption scheme is based on two permutation rounds, which employs pixel swapping operation and diffusion operation which is simple and provides required security against plaintext, differential and various other attacks. Three separate chaotic sequences are generated using 1D Sine–Sine system which enhances the key space of the encryption scheme. Secret keys are updated dynamically with SHA-256 hash value obtained from plain image. Hash values of plain image are efficiently used without loss of any hash value information. This makes the encryption scheme plaintext sensitive and secure against plaintext attacks. Performance and security aspects of encryption scheme is analyzed both quantitatively using predefined security metrics and qualitatively by scrutinizing the internal working of encryption scheme. Computational complexity of encrypting a plain image of size [Formula: see text] is [Formula: see text] and is suitable for encrypting keyframes of video for secure surveillance applications.


2019 ◽  
Vol 2019 ◽  
pp. 1-7
Author(s):  
Shu-ying Wang ◽  
Jian-feng Zhao ◽  
Xiao-yan Wang ◽  
Li-tao Zhang

Based on the Adomian decomposition method and Lyapunov stability theory, this paper constructs a fractional-order memristive hyperchaos. Then, the 0–1 test analysis is applied to detect random nature of chaotic sequences exhibited by the fractional-order systems. Comparing with the corresponding integer-order hyperchaotic system, the fractional-order hyperchaos possesses higher complexity. Finally, an image encryption algorithm is proposed based on the fractional-order memristive hyperchaos. Security and performance analysis indicates that the proposed chaos-based image encryption algorithm is highly resistant to statistical attacks.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Jian-feng Zhao ◽  
Shu-ying Wang ◽  
Li-tao Zhang ◽  
Xiao-yan Wang

This paper presents a three-dimensional autonomous chaotic system with high fraction dimension. It is noted that the nonlinear characteristic of the improper fractional-order chaos is interesting. Based on the continuous chaos and the discrete wavelet function map, an image encryption algorithm is put forward. The key space is formed by the initial state variables, parameters, and orders of the system. Every pixel value is included in secret key, so as to improve antiattack capability of the algorithm. The obtained simulation results and extensive security analyses demonstrate the high level of security of the algorithm and show its robustness against various types of attacks.


Entropy ◽  
2018 ◽  
Vol 20 (12) ◽  
pp. 974 ◽  
Author(s):  
Xiaoling Huang ◽  
Guodong Ye

An image encryption algorithm is presented in this paper based on a chaotic map. Different from traditional methods based on the permutation-diffusion structure, the keystream here depends on both secret keys and the pre-processed image. In particular, in the permutation stage, a middle parameter is designed to revise the outputs of the chaotic map, yielding a temporal delay phenomena. Then, diffusion operation is applied after a group of random numbers is inserted into the permuted image. Therefore, the gray distribution can be changed and is different from that of the plain-image. This insertion acts as a one-time pad. Moreover, the keystream for the diffusion operation is designed to be influenced by secret keys assigned in the permutation stage. As a result, the two stages are mixed together to strengthen entirety. Experimental tests also suggest that our algorithm, permutation– insertion–diffusion (PID), performs better when expecting secure communications for images.


Sign in / Sign up

Export Citation Format

Share Document