scholarly journals A Tweak-Cube Color Image Encryption Scheme Jointly Manipulated by Chaos and Hyper-Chaos

2019 ◽  
Vol 9 (22) ◽  
pp. 4854
Author(s):  
Li-Lian Huang ◽  
Shi-Ming Wang ◽  
Jian-Hong Xiang

This paper proposes a novel tweak-cube color image encryption scheme jointly manipulated by chaos and hyper-chaos. One-dimensional (1D) chaotic maps are effortless to operate, but the key space is relatively small. The hyperchaotic system has complex dynamics properties, which are capable of compensating for the defects of 1D chaotic maps. Thus, we first raise an improved 1D chaotic map with an increased key space. Then, we associate it with a four-dimensional (4D) hyperchaotic system to generate the key streams and further rotate and shift the rows and columns of each component of Red (R), Green (G), and Blue (B) for the color image. The permuting mode is to disturb the original position of the pixels by mimicking the way of twisting the Rubik’s cube. Moreover, the key stream updated by the plain images is also utilized for diffusion and scramble at the bit level. As a consequence, our cryptosystem enhances the security without at the expense of increasing time cost.

Entropy ◽  
2018 ◽  
Vol 20 (11) ◽  
pp. 843 ◽  
Author(s):  
Congxu Zhu ◽  
Guojun Wang ◽  
Kehui Sun

This paper presents an improved cryptanalysis of a chaos-based image encryption scheme, which integrated permutation, diffusion, and linear transformation process. It was found that the equivalent key streams and all the unknown parameters of the cryptosystem can be recovered by our chosen-plaintext attack algorithm. Both a theoretical analysis and an experimental validation are given in detail. Based on the analysis of the defects in the original cryptosystem, an improved color image encryption scheme was further developed. By using an image content–related approach in generating diffusion arrays and the process of interweaving diffusion and confusion, the security of the cryptosystem was enhanced. The experimental results and security analysis demonstrate the security superiority of the improved cryptosystem.


2019 ◽  
Vol 29 (09) ◽  
pp. 1950115 ◽  
Author(s):  
Guangfeng Cheng ◽  
Chunhua Wang ◽  
Hua Chen

In recent years, scholars studied and proposed some secure color image encryption algorithms. However, the majority of the published algorithms encrypted red, green and blue (called [Formula: see text], [Formula: see text], [Formula: see text] for short) components independently. In the paper, we propose a color image encryption scheme based on hyperchaotic system and permutation-diffusion architecture. The encryption algorithm utilizes a block permutation which is realized by mixing [Formula: see text], [Formula: see text], [Formula: see text] components to strengthen the dependence of each component. Besides, it can reduce time consumption. Then, the key streams generated by the hyperchaotic system are exploited to diffuse the pixels, the three components affect each other again. And in the diffusion process, we can get two totally different encrypted images even though we change the last pixel because the [Formula: see text] component is diffused in reverse order. The experimental results reveal that our algorithm possesses better abilities of resisting statistical attacks and differential attacks, larger key space, closer information entropy to 8, and faster encryption speed compared with other chaos-based color image encryption algorithms.


2019 ◽  
Vol 29 (08) ◽  
pp. 1950103 ◽  
Author(s):  
Kirtee Panwar ◽  
Ravindra Kumar Purwar ◽  
Anchal Jain

This paper presents cryptanalysis of a color image encryption scheme. DNA encoding and multiple 1D chaotic maps are used in the encryption process which increases its computational speed. The key streams generated in this scheme are dependent on secret keys, updated using the sum of pixel intensities of plain image of size [Formula: see text]. This paper analyzes the security of encryption scheme against the chosen plaintext attack and finds that only [Formula: see text] different key matrices for diffusion are possible, an equivalent version of which can be revealed with [Formula: see text] chosen plain images. Experimental results are presented to prove that equivalent diffusion keys and block permutation sequence can be effectively revealed through the attack. In addition, low sensitivity of keys towards changes in plaintext along with insecure diffusion process involved in encryption process is also reported. Finally, to remedy the shortcomings of the original encryption scheme, an enhanced encryption scheme is generated that can resist chosen/known plaintext attack while maintaining the merits of the original encryption scheme.


2012 ◽  
Vol 182-183 ◽  
pp. 1800-1804
Author(s):  
Jin Qiu ◽  
Ping Wang

In this paper, a chaos-based image encryption scheme with stream cipher structure is proposed. The key component of the encryption system is a pseudo-random bit generator (PRBG) based on a chaotic map and a linear feedback shift register. The proposed PRBG is not only passes the statistical tests, but also improve the security. The overall design of the image encryption scheme is to be explained while detail cryptanalysis is given.


Electronics ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 1280 ◽  
Author(s):  
Lina Ding ◽  
Qun Ding

In this paper, a novel image encryption scheme based on a fractional-order Henon chaotic map, a two-dimensional (2D) Discrete Wavelet Transform (DWT) and a four-dimensional (4D) hyperchaotic system is proposed. Firstly, the original image is transformed and scrambled by the 2D DWT, and then the image is shuffled with the fractional-order Henon chaotic time series. Finally, the shuffled image is diffused and encrypted by the 4D hyperchaos system. Through the application of DWT and high-low dimensional chaotic systems, the encryption effect of this algorithm is better than those done by single or ordinary chaotic encryption algorithm, and it has a larger key space and higher security. The experimental tests show that the system has good statistical characteristics, such as histogram analysis, correlation coefficient analysis, key space and key sensitivity, information entropy analysis and so on. The encryption algorithm also passes the relevant security attack tests with good security.


Sign in / Sign up

Export Citation Format

Share Document