scholarly journals Design and Implementation of Novel Multi-Converter-Based Unified Power Quality Conditioner for Low-Voltage High-Current Distribution System

Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 3150 ◽  
Author(s):  
Bin Yang ◽  
Kangli Liu ◽  
Sen Zhang ◽  
Jianfeng Zhao

This paper introduces a novel multi-converter-based unified power quality conditioner (MCB-UPQC). Three optimization methods are proposed based on the traditional UPQC: (1) The shunt converter is substituted with multi-modular parallel converters. Hence, the reactive power and harmonic currents can be increased greatly, which are suitable for low-voltage high-current distribution systems. (2) The series converters consist of three H-bridge inverters, and each of the H-bridge inverters is controlled separately. The control strategy is easier to achieve and can improve the control performance of voltage regulation under unbalanced voltage sag or swell. (3) A three-phase four-leg (3P4L) converter is connected to the common DC bus of the proposed UPQC to connect the renewable energy and energy storage system. The detailed mathematical models of shunt and series converters are analyzed, respectively. A multi-proportional resonant (PR) controller is presented in the voltage regulation and reactive power compensation control algorithms. The simulation results verify the feasibility of the control algorithms. Finally, the experimental platform is established, and the experimental results are presented to verify the validity and superiority of the proposed topology and algorithms.

Author(s):  
C.S Boopathi ◽  
Kuppusamy Selvakumar ◽  
Avisek Dutta

In this paper unified power quality conditioner has been used to enhance low voltage ride through capability of grid connected wind conversion system taking Doubly fed induction generator (DFIG). Unified Power quality conditioner (UPQC) device is a combination of series active filter and shunt active filter. This custom power device is mainly used to mitigate power quality issues which is an essential factor today because of wide application of power electronics devices. UPQC is capable to deal with voltage and current imperfection simultaneously. It is installed in the system mainly to improve the power quality i.e. Voltage sag/swell, Harmonics, reactive power compensation etc. at point of common coupling. System is modeled in MATLAB/SIMULINK and results shows utilization of UPQC for the enhancement of LVRT of a DFIG wind system according to Grid code. when fault occurs in the system, it will create voltage dip and series compensator of UPQC injects during this time to prevent disconnection from grid and stay connected to contribute during fault. UPQC is also used for fast restoration of system steady state, power factor improvement, prevent rotor over current.


2012 ◽  
Vol 433-440 ◽  
pp. 6731-6736
Author(s):  
Chandrakant L. Bhattar ◽  
Vilas N. Ghate

This paper presents the new control algorithm for three-phase, four-wire distributing system using unified power quality conditioner (UPQC). The UPQC, a combination of series and shunt active filter (AF) with common dc link, is one of the best solution towards the compensation of voltage sag, swell problems and also compensate voltage flicker/imbalance, reactive power, negative sequence current and maintain zero voltage regulation (ZVR) at the point of common coupling (PCC) on distribution system. The series AF is seen by using a three-phase, three leg voltage source inverter (VSI) and the shunt AF is of a three-phase, four leg voltage source inverter (VSI). The proposed model of the UPQC is developed in the MATLAB/SIMULINK environment and the simulation results prove the power quality improvement in the system.


Author(s):  
Oluwafunso Oluwole Osaloni ◽  
Akshay Kumar Saha

The main purpose of this work is to introduced power quality improvement in low voltage distribution networks with the application of Improved Unified Power Quality Conditioner (I-UPQC). Ordinarily, in the normal UPQC, the series inverter handles active injection while the shunt inverter provides load imaginary power injection. However, in the case of I-UPQC, the series inverter of the UPQC performs two functions concurrently as a sag and swell compensator and assists the shunt inverter in load reactive power requirements. The reactive power sharing is achieved by the integration of the Power Angle Control (PAC) of UPQC to coordinate imaginary power-sharing between the two inverters. With the view that the series inverter produces active and reactive power, this concept is named I-UPQC. Full mathematical analysis to extend the PAC method to I-UPQC has been carried out in this work. The simulation and results produced in the MATLAB / SIMULINK environment and discussion to support the developed concept are also presented. The result from the proposed concept is confirmed by comparing the concept with operation unified power quality conditioner in steady-state.


Author(s):  
M. Laxmidevi Ramanaiah ◽  
M. Damodar Reddy

This paper introduces a new optimization method to determine the optimal allocation of Unified Power Quality Conditioner (UPQC) in the distribution systems. UPQC is a versatile Custom Power Device (CPD) to solve problems related to voltage and current by the series and shunt compensator in the distribution systems. The task of UPQC highlighted in this paper is the required load reactive power is provided by both the series and shunt compensators. The UPQC’s steady state compensation capability has given a solution for providing reactive power compensation in large distribution systems. The optimization method adopted is Moth Flame Optimization (MFO). The best location and series compensator voltage are determined using MFO. The voltage injected by the series compensator and reactive power injected by the shunt compensator is incorporated in the load flow method. The effectiveness of the proposed method is validated with standard distribution systems.


2019 ◽  
Vol 4 (9) ◽  
pp. 1-8
Author(s):  
Montaser Abd El Sattar ◽  
Adel A. Elbaset ◽  
Ali H. KasemAlaboudy ◽  
Wessam Arafa Hafez

Wind energy system is lately receiving a lot of attention, because they are cost inexpensive, environmental safe and clean renewable energy source, as compared with nuclear and fossil fuel power generation. The operational characteristics of wind electric turbines has considerable dissatisfaction and stress on the quality of electric power system. Harmonics, variations of voltage and reactive power are most of power quality issues for grid connected with wind turbine. This paper introduces a design and simulation of unified power quality conditioner using a fuzzy controller to improve the power quality for Egyptian power grid connected to Zafarana Egypt wind system. The proposed performance of the unified power quality conditioner system is verified by simulating the model using MATLAB/SIMULINK environment. The simulation results showed that the proposed unified power quality conditioner provide efficient cancellation of both load current  harmonics  and supply voltage sag in addition to compensation of reactive power, and thus making the electrical grid connected wind energy system more efficient by improving the quality of power.


2018 ◽  
Vol 7 (1.8) ◽  
pp. 193
Author(s):  
N Nithya Sree ◽  
P Srinivasa Varma

Interline unified power quality conditioner is the recent advancement in the world of FACTS devices and technology. The new equipment is only a mere extension of the existing FACTS device features  like Distributed Static Compensator which does not limit to better voltage regulation at the gird side as well as load side bus. The effectiveness of the new FACTS device is compared with its homologous counterpart, namely conventional Unified power quality conditioner. It is observed that there is significant difference with respect to the arrangement of parallel and series connected converters. Soft computing technique namely fuzzy logic based controller for the proposed Interline unified power quality conditioner is presented in the paper. The implementation and usefulness of the proposed control topology is tested and simulated in MATLAB/SIMULINK environment. 


Sign in / Sign up

Export Citation Format

Share Document