scholarly journals Optimal Design of a High-Speed Single-Phase Flux Reversal Motor for Vacuum Cleaners

Energies ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 3334 ◽  
Author(s):  
Vladimir Dmitrievskii ◽  
Vladimir Prakht ◽  
Vadim Kazakbaev ◽  
Sergey Sarapulov

This paper describes the design of a single-phase high-speed flux reversal motor (FRM) for use in a domestic application (vacuum cleaner). This machine has a simple and reliable rotor structure, which is a significant advantage for high-speed applications. An FRM design in which the inner stator surface is entirely used allows it to decrease its volume and increase its efficiency. The mathematical modeling, based on the finite element method, and the optimal design of the high-speed single-phase FRM are described. The criterion of optimization and the selection of a proper optimization algorithm are discussed. Since the finite element method introduces a small but quasi-random error due to round-off accumulation and choosing the mesh, etc., the Nelder-Mead method, not requiring the derivatives calculation, was chosen for the optimization. The target parameter of the optimization is built for the motor efficiency when operating at different loads. Calculations show that the presented approach provides increasing motor efficiency during the optimization, particularly at underload.

2020 ◽  
Vol 14 (27) ◽  
pp. 55-66
Author(s):  
Hugo Leonardo Murcia Gallo ◽  
Richard Lionel Luco Salman ◽  
David Ignacio Fuentes Montaña

The main objective of this study is to analyze the structural response of a boat during a slamming event using the Finite Element Method in a Small Water Area Twin Hull (SWATH) type boat.  In the mentioned load condition, the acceptance criteria established by a classification society must be fulfilled, taking into account the areas where this event affects the structure such as the junction deck, the pontoons and other structural members established by the standard, all this generated by the high pressure loads in the ship's structure in a very short period of time being an element of study in this type of vessels, as long as they are within the range of high speed vessels. Among the main results of this study were the deformations and stresses in the structure obtained under the reference parameters of the classification society.


2009 ◽  
Vol 626-627 ◽  
pp. 249-254
Author(s):  
Wang Yu Liu ◽  
X.K. Liu ◽  
Jing Li ◽  
Yong Zhang

Combined the analytic method with the finite element method, the data necessary for calculating the heat distribution ratio for high speed cutting was mined first, and the experimental result was used to validate the authenticity of finite element modeling. Then, the ratio of heat distribution for high speed cutting based on the analytic model was obtained by customizing the special subroutine developed by the authors, which provides a new method for calculating the heat distribution.


2008 ◽  
Vol 116 (1357) ◽  
pp. 941-949 ◽  
Author(s):  
Beatriz DEFEZ ◽  
Guillermo PERIS-FAJARNES ◽  
Ignacio TORTAJADA ◽  
Fernando BRUSOLA ◽  
Larisa DUNAI

1988 ◽  
Vol 12 (2) ◽  
pp. 115-118
Author(s):  
R.G. Fenton ◽  
Wu Zhenbiao

The deformation of Geneva wheels resulting from a unit normal unit force applied at the point of contact between the driving pin and the wheel is determined using the finite element method. The dynamic and static forces driving the Geneva wheel, and wheel deformations are computed. The output of the flexible Geneva wheel is determined with the help of an interpolating polynomial. An interactive process is used to update the dynamic component of the force based on the computed wheel acceleration values. Results indicate that the output of high speed flexible Geneva wheels is different from that obtained for Geneva mechanism having non-deforming links.


Sign in / Sign up

Export Citation Format

Share Document