rotor structure
Recently Published Documents


TOTAL DOCUMENTS

206
(FIVE YEARS 55)

H-INDEX

12
(FIVE YEARS 2)

Author(s):  
Łukasz Knypiński ◽  
Frédéric Gillon

Purpose The purpose of this paper is to develop an algorithm and software for determining the size of a line-start permanent magnet synchronous motor (LSPMSMs) based on its optimization. Design/methodology/approach The software consists of an optimization procedure that cooperates with a FEM model to provide the desired behavior of the motor under consideration. The proposed improved version of the genetic algorithm has modifications enabling efficient optimization of LSPMSMs. The objective function consists of three important functional parameters describing the designed machine. The 2-D field-circuit mathematical model of the dynamics operation of the LSPMSMs consists of transient electromagnetic field equations, equations describing electric windings and mechanical motion equations. The model has been developed in the ANSYS Maxwell environment. Findings In this proposed approach, the set of design variables contains the variables describing the stator and rotor structure. The improved procedure of the optimization algorithm makes it possible to find an optimal motor structure with correct synchronization properties. The proposed modifications make the optimization procedure faster and more Originality/value This proposed approach can be successfully applied to solve the design problems of LSPMSMs.


Author(s):  
Ping Liu ◽  
Tao Deng ◽  
Zhenhua Su ◽  
Lu Jiang ◽  
Zhentao Ding

In order to meet the requirements of multi-degree-of-freedom (multi-DOF) driving units for omnidirectional vehicle wheels, a multi-DOF spherical induction motor (SIM) is proposed with composite rotor through the conversion of design concept of linear induction motor (LIM), which compensates for the insufficiency of traditional multi-DOF driving scheme with structural complexity, control difficulties and poor dynamic performance. The SIM realizes two DOF driving and has the characteristics of direct output on rotor surface. Firstly, the overall design of SIM is drafted, as well as finite element model and control system are established. Subsequently, in order to optimize SIM performance, the multi-objective optimization design of composite rotor structure is proposed by adopting non-dominated sorting genetic algorithm-II (NSGA-II). The results show that the reasonable design of rotor structure can effectively improve output torque and reduce fluctuation. And the proposed design idea based on theory of LIM can provide a reference for SIM design.


2021 ◽  
Vol 11 (23) ◽  
pp. 11501
Author(s):  
Shun Zhong ◽  
Suxia Zhang ◽  
Jie Yang ◽  
Yanan Zhang

Overhung rotors are widely used in the industrial field. However, compared with normal structure rotors, the prediction and control of overhung rotors cannot achieve good performance. The work aims to investigate the dynamical behaviours of an overhung rotor by means of correlation analysis, and find its possible application. In this work, based on a real type of rotor, the dynamic model of the rotor with overhang is established by means of the finite element method. Simulation of the dynamic model with different input positions and support stiffnesses is conducted. Based on the methodology of correlation analysis, by introducing a correlation parameter of a proportion of amplitude of measured signal and imbalance mass, the position which has most effect on the vibration is found. Meanwhile, an experiment on the same type of overhung rotor is carried out to validate the results. The numerical results and corresponding experimental results prove that the overhung node has the most effect on the vibration amplitudes of the measured points. Choosing the overhung node to add trial weight, the overhung rotor can be easily balanced. The theory provides an alternative approach to modal analysis which needs more knowledge of the system.


Author(s):  
Amir Darjazini ◽  
Abolfazl Vahedi ◽  
Amin Nobahari ◽  
Saber Gharehseyed

Purpose Pulsating torques cause a number of problems in electrical machines, including mechanical vibrations, acoustic noise and the depreciation of mechanical equipment. In induction motors, the slot skewing method is an effective way to solve these issues; however, it has some drawbacks such as output torque drop, stray loss intensification due to inter-bar currents and iron loss increment. Besides, slot skewing may not be practical in higher-rated induction motors. In this regard, this paper introduces a modified non-skewed rotor (MNSR) structure as a possible alternative to the skewed designs. Design/methodology/approach The proposed structure includes a two-segmented rotor with an intermediate ring between the rotor parts that are mounted on the shaft with a relative shift angle. Detailed information about the idea and structure of the MNSR as well as its manufacturing aspects will be presented in the second section of the paper. First, the working principle of the proposed design is described via analytical equations to provide an insight into the concept. The shifting angle will then be calculated by analyzing the harmonic contents of the electromagnetic torque. Finally, the validity of the analytical method will be verified by developing three-dimensional finite element models. Findings It is demonstrated that by using the proposed rotor structure, the torque ripple has been reduced to a satisfactory level without significantly affecting the mean torque, unlike the skewing method. Furthermore, the new method could avoid the disadvantages of the skewing method while enhancing other motor characteristics such as iron loss. Also, the total volume of the MNSR is equal to the initial design, and the mass and material differences are also negligible. Originality/value In this paper, a MNSR is introduced as a possible alternative to the skewed patterns. The study mainly focused on electromagnetic torque profile characteristics, i.e. the mean torque enhancement and the ripple reduction. The MNSR structure can be used for general purposes and high-performance applications, especially where excellent torque characteristics are required.


Symmetry ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2161
Author(s):  
Yusheng Hu ◽  
Liyi Li ◽  
Weilin Guo ◽  
Shanshan Wang

In engineering application, the hot press assembly technology is often used to improve the stability of the rotor structure, but the conventional design methods cannot effectively evaluate the influence of this process on the rotor strength, which easily causes the rotor strength to exceed its safety margin range, and seriously it will lead to the failure of the rotor structure. This paper takes the cylindrical magnet surface-mounted high-speed permanent magnet synchronous motor rotor as the research object. Firstly, the influence of the assembly pressing force on the rotor stresses and interference is analyzed; then, comprehensively considering the assembly pressing force, speed and temperature, the rotor strength’s design method with high structural stability is proposed. Finally, based on the proposed method, the rotor strength of a 100 kW/30,000 rpm high-speed motor is designed, and the feasibility of the design is verified by over-speed experiment.


Author(s):  
Shengkai Guo ◽  
Shiqiao Gao ◽  
Lei Jin ◽  
Xueda Du ◽  
Zuozong Yin ◽  
...  

Abstract Energy harvesting in multi-directional excitation for human wearable devices is a challenge. A rotating electromagnetic energy harvester(REMEH) based on an eccentric rotor structure is proposed in this paper. Two poles of the magnets in REMEH are alternately arranged in a ring. The electrical output characteristics of the energy harvester are analyzed through theoretical, numerical simulation and experimental testing methods based on the establishment of magnetic flux density models, the coil induced voltage, and the excitation direction of the eccentric rotor structure. Theoretical analysis and experimental results show that the design of the eccentric rotor structure is well adapted to multi-directional and irregular excitation. The circular staggered arrangement of the magnets effectively increases the output voltage and output power. The results show that the average output power increases slowly when the walking speed increases from 1km/h to 3km/h, and the average output power increases substantially when the walking speed increases from 3km/h to 5km/h. When the walking speed is 1km/h and 3km/h, the average output power is 0.439mW and 0.638mW, respectively. At a walking speed of 5 km/h, the average output power increases rapidly to 1.68mW, corresponding to a power density of 16.59μW/g. This high-performance energy harvester can provide effective power supply for wearable devices or low-powered sensors.


2021 ◽  
Vol 15 ◽  
pp. 211-222
Author(s):  
Navya Thirumaleshwar Hegde ◽  
Aldrin Claytus Vaz ◽  
C. G. Nayak

Unmanned Aerial Vehicles (UAVs) guidance, control and navigation have directed the attention of many researchers in both aerospace engineering as well as control theory. Due to the unique rotor structure of Tiltrotor hybrid UAVs, they exhibit special application value. Quad Tiltrotor UAVs set up a distinctive platform that satisfies the needs of the varying mission requirements by combining the conventional features of high-speed cruise capabilities of an aircraft and hovering capabilities of a helicopter and by tilting its four rotors. The aim of this research article is to control the attitude and altitude of the UAV in the presence of uncertainty using two different control techniques. This paper addresses the comparative analysis of the robust H-infinity controller with classical PID control designs for the transition manoeuvre of a hybrid UAV: the VTOL Tiltrotor UAV. The proposed controllers achieve hover to cruise mode transition and vice-versa. The main idea behind the design of controller is to model and analyze the UAV’s position and attitude dynamics. The desired flight trajectory and the transition manoeuvre is achieved by controlling the tilt angle in 15° intervals from 90° to 0° and vice-versa. Performance index subjected to IAE is estimated and compared for both the controllers in the presence of noise, disturbances and uncertainties. The results of simulation illustrate that the robust H-infinity controller achieves better transition, good adaptability, robust performance and robust stability for the whole flight envelope when compared with the PID controller.


Author(s):  
Silba Mathew ◽  
R. M. Ram Kumar ◽  
Naveen Kumar Endla ◽  
Chaitanya Vundru ◽  
Ramesh Singh ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document