scholarly journals A Numerical Study on the Development of Self-Similarity in a Wind Turbine Wake Using an Improved Pseudo-Spectral Large-Eddy Simulation Solver

Energies ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 643 ◽  
Author(s):  
Pin Lyu ◽  
Wen-Li Chen ◽  
Hui Li ◽  
Lian Shen

Large-eddy simulation (LES) is performed to investigate self-similarity in a wind turbine wake flow. The turbine is represented using an actuator line model in a pseudo-spectral method-based solver. A new hybrid approach of smoothed pseudo-spectral method and finite-difference method (sPSMFDM) is proposed to alleviate the Gibbs phenomenon caused by the jump of velocity and pressure around the turbine. The LES is validated with the mean velocity and turbulence statistics obtained from wind-tunnel measurement reported in the literature. Through an appropriate choice of characteristic scales of velocity and length, self-similarity is elucidated in the normalized mean velocity and Reynolds stress profiles at various distances. The development of self-similarity is categorized into three stages based on the variation in the characteristic scales and the spanwise distribution of normalized velocity deficit. The mechanisms responsible for the transition of self-similarity stages are analyzed in detail. The findings of the flow physics obtained in this study will be useful for the modeling and fast prediction of wind turbine wake flows.

2007 ◽  
Vol 75 ◽  
pp. 012041 ◽  
Author(s):  
A Jimenez ◽  
A Crespo ◽  
E Migoya ◽  
J Garcia

2018 ◽  
Vol 115 ◽  
pp. 1166-1176 ◽  
Author(s):  
Nima Sedaghatizadeh ◽  
Maziar Arjomandi ◽  
Richard Kelso ◽  
Benjamin Cazzolato ◽  
Mergen H. Ghayesh

2019 ◽  
Author(s):  
Arslan Salim Dar ◽  
Jacob Berg ◽  
Niels Troldborg ◽  
Edward G. Patton

Abstract. We perform large-eddy simulation of flow in complex terrain under neutral atmospheric stratification. We study the self-similar behavior of a turbine wake as a function of varying terrain complexity and perform comparison with a flat terrain. By plotting normalized velocity deficit profiles in different complex terrain cases, we verify that self-similarity is preserved as we move downstream from the turbine. We find that this preservation is valid for a shorter distance downstream compared to what is observed in flat terrain. A larger spread of the profiles toward the tails due to varying levels of shear is also observed.


2021 ◽  
Author(s):  
Ingrid Neunaber ◽  
Joachim Peinke ◽  
Martin Obligado

Abstract. Within the energy transition, more and more wind turbines are clustered in big wind farms, often offshore. Therefore, an optimal positioning of the wind turbines is crucial to optimize both the annual power production and the maintenance time. Good knowledge of the wind turbine wake and the turbulence within is thus important. However, although wind turbine wakes have been subject to various studies, they are still not fully understood. One possibility to improve the comprehension is to look into the modeling of bluff body wakes. These wakes have been the subject of intensive study for decades, and by means of the scaling behavior of the centerline mean velocity deficit, the nature of the turbulence inside a wake can be classified. In this paper, we introduce the models for equilibrium and non-equilibrium turbulence from classical wake theory as introduced by A. Townsend and W. George, and we test whether the requirements are fulfilled in the wake of a wind turbine. Finally, we apply the theory to characterize the wind turbine wake, and we compare the results to the Jensen and the Bastankhah-Porté-Agel model. We find that the insight into the classical bluff body wake can be used to further improve the wind turbine wake models. Particularly, the classical bluff body wake models perform better than the wind turbine wake models due to the presence of a virtual origin in the scalings, and we demonstrate the possibility of improving the wind turbine wake models by implementing this parameter. We also see how the dissipation changes across the wake which is important to model wakes within wind farms correctly.


Sign in / Sign up

Export Citation Format

Share Document