scholarly journals Investigation of the dissipation in the wake of a wind turbine array

2021 ◽  
Author(s):  
Ingrid Neunaber ◽  
Joachim Peinke ◽  
Martin Obligado

Abstract. Within the energy transition, more and more wind turbines are clustered in big wind farms, often offshore. Therefore, an optimal positioning of the wind turbines is crucial to optimize both the annual power production and the maintenance time. Good knowledge of the wind turbine wake and the turbulence within is thus important. However, although wind turbine wakes have been subject to various studies, they are still not fully understood. One possibility to improve the comprehension is to look into the modeling of bluff body wakes. These wakes have been the subject of intensive study for decades, and by means of the scaling behavior of the centerline mean velocity deficit, the nature of the turbulence inside a wake can be classified. In this paper, we introduce the models for equilibrium and non-equilibrium turbulence from classical wake theory as introduced by A. Townsend and W. George, and we test whether the requirements are fulfilled in the wake of a wind turbine. Finally, we apply the theory to characterize the wind turbine wake, and we compare the results to the Jensen and the Bastankhah-Porté-Agel model. We find that the insight into the classical bluff body wake can be used to further improve the wind turbine wake models. Particularly, the classical bluff body wake models perform better than the wind turbine wake models due to the presence of a virtual origin in the scalings, and we demonstrate the possibility of improving the wind turbine wake models by implementing this parameter. We also see how the dissipation changes across the wake which is important to model wakes within wind farms correctly.

Energies ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 5392
Author(s):  
Ingrid Neunaber ◽  
Michael Hölling ◽  
Richard J. A. M. Stevens ◽  
Gerard Schepers ◽  
Joachim Peinke

Wind turbines are usually clustered in wind farms which causes the downstream turbines to operate in the turbulent wakes of upstream turbines. As turbulence is directly related to increased fatigue loads, knowledge of the turbulence in the wake and its evolution are important. Therefore, the main objective of this study is a comprehensive exploration of the turbulence evolution in the wind turbine’s wake to identify characteristic turbulence regions. For this, we present an experimental study of three model wind turbine wake scenarios that were scanned with hot-wire anemometry with a very high downstream resolution. The model wind turbine was exposed to three inflows: laminar inflow as a reference case, a central wind turbine wake, and half of the wake of an upstream turbine. A detailed turbulence analysis reveals four downstream turbulence regions by means of the mean velocity, variance, turbulence intensity, energy spectra, integral and Taylor length scales, and the Castaing parameter that indicates the intermittency, or gustiness, of turbulence. In addition, a wake core with features of homogeneous isotropic turbulence and a ring of high intermittency surrounding the wake can be identified. The results are important for turbulence modeling in wakes and optimization of wind farm wake control.


2019 ◽  
Vol 869 ◽  
pp. 1-26 ◽  
Author(s):  
Daniel Foti ◽  
Xiaolei Yang ◽  
Lian Shen ◽  
Fotis Sotiropoulos

Wake meandering, a phenomenon of large-scale lateral oscillation of the wake, has significant effects on the velocity deficit and turbulence intensities in wind turbine wakes. Previous studies of a single turbine (Kang et al., J. Fluid. Mech., vol. 774, 2014, pp. 374–403; Foti et al., Phys. Rev. Fluids, vol. 1 (4), 2016, 044407) have shown that the turbine nacelle induces large-scale coherent structures in the near field that can have a significant effect on wake meandering. However, whether nacelle-induced coherent structures at the turbine scale impact the emergent turbine wake dynamics at the wind farm scale is still an open question of both fundamental and practical significance. We take on this question by carrying out large-eddy simulation of atmospheric turbulent flow over the Horns Rev wind farm using actuator surface parameterisations of the turbines without and with the turbine nacelle taken into account. While the computed mean turbine power output and the mean velocity field away from the nacelle wake are similar for both cases, considerable differences are found in the turbine power fluctuations and turbulence intensities. Furthermore, wake meandering amplitude and area defined by wake meanders, which indicates the turbine wake unsteadiness, are larger for the simulations with the turbine nacelle. The wake influenced area computed from the velocity deficit profiles, which describes the spanwise extent of the turbine wakes, and the spanwise growth rate, on the other hand, are smaller for some rows in the simulation with the nacelle model. Our work shows that incorporating the nacelle model in wind farm scale simulations is critical for accurate predictions of quantities that affect the wind farm levelised cost of energy, such as the dynamics of wake meandering and the dynamic loads on downwind turbines.


Wind Energy ◽  
2006 ◽  
Vol 9 (3) ◽  
pp. 219-236 ◽  
Author(s):  
D. Medici ◽  
P. H. Alfredsson

2017 ◽  
Author(s):  
Changzhong Feng ◽  
Bingyi Liu ◽  
Songhua Wu ◽  
Jintao Liu ◽  
Rongzhong Li ◽  
...  

Abstract. As modern wind power industry quickly develops, it is of high priority to optimize layouts and operations of wind turbines to reduce the influences of wakes induced by upstream wind turbines. The wake behaves complicatedly with land ocean-atmosphere interactions. This complex wake could be observed by two or more synchronously operated Doppler lidars. Accordingly, we characterized a wind turbine wake evolving over an intertidal zone performed with dual-lidar observations. Dynamic process of wakes merging that occurred from approximately 1 D (rotor diameter) downstream was captured and analysed. The phenomenon that wake length increased with rising tide was analysed in details. It suggested that the increase of wake length varied with underlying surface roughness transition from mud to sea water as well as the rising sea level. Finally, wake meandering cases were analyzed in detail. Our research shows that the dual-lidar observation technology is a promising remote sensing tool for characterization of complicated wind turbine wakes.


Author(s):  
Alexander Štrbac ◽  
Tanja Martini ◽  
Daniel H. Greiwe ◽  
Frauke Hoffmann ◽  
Michael Jones

AbstractThe use of offshore wind farms in Europe to provide a sustainable alternative energy source is now considered normal. Particularly in the North Sea, a large number of wind farms exist with a significant distance from the coast. This is becoming standard practice as larger areas are required to support operations. Efficient transport and monitoring of these wind farms can only be conducted using helicopters. As wind turbines continue to grow in size, there is a need to continuously update operational requirements for these helicopters, to ensure safe operations. This study assesses German regulations for flight corridors within offshore wind farms. A semi-empirical wind turbine wake model is used to generate velocity data for the research flight simulator AVES. The reference offshore wind turbine NREL 5 MW has been used and scaled to represent wind turbine of different sizes. This paper reports result from a simulation study concerning vortex wake encounter during offshore operations. The results have been obtained through piloted simulation for a transport case through a wind farm. Both subjective and objective measures are used to assess the severity of vortex wake encounters.


2018 ◽  
Vol 140 (3) ◽  
Author(s):  
Enrico G. A. Antonini ◽  
David A. Romero ◽  
Cristina H. Amon

Computational fluid dynamics (CFD) simulations of wind turbine wakes are strongly influenced by the choice of the turbulence model used to close the Reynolds-averaged Navier-Stokes (RANS) equations. A wrong choice can lead to incorrect predictions of the velocity field characterizing the wind turbine wake and, consequently, to an incorrect power estimation for wind turbines operating downstream. This study aims to investigate the influence of different turbulence models, namely the k–ε, k–ω, SSTk–ω, and Reynolds stress models (RSM), on the results of CFD wind turbine simulations. Their influence was evaluated by comparing the CFD results with the publicly available experimental measurements of the velocity field and turbulence quantities from the Sexbierum and Nibe wind farms. Consistent turbulence model constants were proposed for atmospheric boundary layer (ABL) and wake flows according to previous literature and appropriate experimental observations, and modifications of the derived turbulence model constants were also investigated in order to improve agreement with experimental data. The results showed that the simulations using the k–ε and k–ω turbulence models consistently overestimated the velocity and turbulence quantities in the wind turbine wakes, whereas the simulations using the shear-stress transport (SST) k–ω and RSMs could accurately match the experimental data. Results also showed that the predictions from the k–ε and k–ω turbulence models could be improved by using the modified set of turbulence coefficients.


Author(s):  
Moritz Palm ◽  
Rene Huijsmans ◽  
Mathieu Pourquie ◽  
Anne Sijtstra

From wind turbines it is known that the wake, induced by a turbine, has a negative impact on the energy production of downstream devices. Basically, the wake is a zone with reduced velocity behind a turbine. Further downstream, the velocity recovers gradually by turbulent mixing with the ambient flow. In order to optimize the design of a tidal farm, the aim of this paper is to find simple relations that can be used to predict the energy output of a given farm configuration. The energy output of a turbine depends on its inflow velocity. Therefore, the strategy is to find a model that is able to predict the velocity field in the tidal farm. Such ‘wake models’ exist already for wind turbines and thruster-thruster interaction. In this research, the applicability of these wake models to tidal turbines is investigated by comparing their results to reference data of tidal turbines. Only limited measurement data for tidal turbines are available; therefore a CFD model of a tidal turbine is used to generate the reference data. The velocity in the wake is simulated for different conditions with the CFD model. The CFD model is validated with the available data in the literature. The velocity in the wake for a single turbine is predicted accurately for different initial conditions. Modeling of the turbulence showed some discrepancies in the far wake, consequently the wake of turbines in farm configurations is predicted less accurate. Three wake models, selected from the literature, are compared to the CFD simulations of the wake behind a single turbine. The wind turbine wake model of Jensen performed best; the velocity in the wake is calculated accurate for different situations. Mutual interaction of wakes will occur inside tidal farms. Several methods from wind turbines theory are used to estimate the velocity in interaction situations. Three basic situations of wake interaction are distinguished: tandem operation, wake interference and overlapping inflow. The interaction methods are tested with CFD reference data for each situation separately. Most methods compared reasonably well; the most suitable interaction methods are selected. A small tidal farm case study is performed to test the combination of wake model and interaction methods. The flow in the cluster of 5 turbines is predicted satisfactorily by the wake model for different inflow velocities. All results indicate that the principle of applying wind turbine wake models to tidal turbine has good potential. However the number of test cases conducted in the thesis is limited and the incorrect turbulence modeling of the CFD model caused some uncertainties for multiple turbine situation.


Energies ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 4430
Author(s):  
Yuan Li ◽  
Zengjin Xu ◽  
Zuoxia Xing ◽  
Bowen Zhou ◽  
Haoqian Cui ◽  
...  

Increasing wind power generation has been introduced into power systems to meet the renewable energy targets in power generation. The output efficiency and output power stability are of great importance for wind turbines to be integrated into power systems. The wake effect influences the power generation efficiency and stability of wind turbines. However, few studies consider comprehensive corrections in an aerodynamic model and a turbulence model, which challenges the calculation accuracy of the velocity field and turbulence field in the wind turbine wake model, thus affecting wind power integration into power systems. To tackle this challenge, this paper proposes a modified Reynolds-averaged Navier–Stokes (MRANS)-based wind turbine wake model to simulate the wake effects. Our main aim is to add correction modules in a 3D aerodynamic model and a shear-stress transport (SST) k-ω turbulence model, which are converted into a volume source term and a Reynolds stress term for the MRANS-based wake model, respectively. A correction module including blade tip loss, hub loss, and attack angle deviation is considered in the 3D aerodynamic model, which is established by blade element momentum aerodynamic theory and an improved Cauchy fuzzy distribution. Meanwhile, another correction module, including a hold source term, regulating parameters and reducing the dissipation term, is added into the SST k-ω turbulence model. Furthermore, a structured hexahedron mesh with variable size is developed to significantly improve computational efficiency and make results smoother. Simulation results of the velocity field and turbulent field with the proposed approach are consistent with the data of real wind turbines, which verifies the effectiveness of the proposed approach. The variation law of the expansion effect and the double-hump effect are also given.


Energies ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 643 ◽  
Author(s):  
Pin Lyu ◽  
Wen-Li Chen ◽  
Hui Li ◽  
Lian Shen

Large-eddy simulation (LES) is performed to investigate self-similarity in a wind turbine wake flow. The turbine is represented using an actuator line model in a pseudo-spectral method-based solver. A new hybrid approach of smoothed pseudo-spectral method and finite-difference method (sPSMFDM) is proposed to alleviate the Gibbs phenomenon caused by the jump of velocity and pressure around the turbine. The LES is validated with the mean velocity and turbulence statistics obtained from wind-tunnel measurement reported in the literature. Through an appropriate choice of characteristic scales of velocity and length, self-similarity is elucidated in the normalized mean velocity and Reynolds stress profiles at various distances. The development of self-similarity is categorized into three stages based on the variation in the characteristic scales and the spanwise distribution of normalized velocity deficit. The mechanisms responsible for the transition of self-similarity stages are analyzed in detail. The findings of the flow physics obtained in this study will be useful for the modeling and fast prediction of wind turbine wake flows.


Sign in / Sign up

Export Citation Format

Share Document