scholarly journals Optimal Placement of Remote-Controlled Switches in Distribution Networks in the Presence of Distributed Generators

Energies ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 1025 ◽  
Author(s):  
Maziar Isapour Chehardeh ◽  
Constantine J. Hatziadoniu

A two-level optimization method is presented to find the optimal number and location of conventional protective devices to be upgraded to remote-controlled switches (RCSs) for an existing distribution network (DN). The effect of distributed generation (DG) on this problem is considered. In the first level, a nonlinear binary program is proposed to maximize the restored customers subject to technical and topological constraints. All feasible interchanges between protective devices and ties involved in the restoration, when a fault occurs at all possible locations are found considering switching dependencies. In the second level, a nonlinear cost function, combining the expected cost of interruptions (ECOST) and the switch cost, is minimized with respect to the location of RCSs. The expected cost function is computed based on the optimum restoration policies obtained from the first level. The optimum placement of RCSs using the proposed algorithm is tested on a 4-feeder 1069-node test system and compared to the solution obtained with a genetic algorithm (GA) on the same system.

Electronics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1452
Author(s):  
Cristian Mateo Castiblanco-Pérez ◽  
David Esteban Toro-Rodríguez ◽  
Oscar Danilo Montoya ◽  
Diego Armando Giral-Ramírez

In this paper, we propose a new discrete-continuous codification of the Chu–Beasley genetic algorithm to address the optimal placement and sizing problem of the distribution static compensators (D-STATCOM) in electrical distribution grids. The discrete part of the codification determines the nodes where D-STATCOM will be installed. The continuous part of the codification regulates their sizes. The objective function considered in this study is the minimization of the annual operative costs regarding energy losses and installation investments in D-STATCOM. This objective function is subject to the classical power balance constraints and devices’ capabilities. The proposed discrete-continuous version of the genetic algorithm solves the mixed-integer non-linear programming model that the classical power balance generates. Numerical validations in the 33 test feeder with radial and meshed configurations show that the proposed approach effectively minimizes the annual operating costs of the grid. In addition, the GAMS software compares the results of the proposed optimization method, which allows demonstrating its efficiency and robustness.


2010 ◽  
Vol 143-144 ◽  
pp. 1046-1050
Author(s):  
Jing Yu Han ◽  
Wang Qun ◽  
Chuan You Li ◽  
Zhang Hong Tang ◽  
Mei Wu Shi

In this paper, a new genetic algorithm method to optimize the frequency selective surface(FSS) is presented. The optimization speed and definition are promoted by limiting the parameter range and changing the genetic basis. A new cost function is introduced to optimize the multi-frequency of FSS by multi-object optimization (MO). The cirque element was optimized by the optimization method, fabricated by the selective electroless plating on fabric and measured by the arch test system. Test result proves the simulated result coincide with measured result. Result shows that it’s possible to realize different optimizations based on the various applying by this method.


2013 ◽  
Vol 848 ◽  
pp. 166-171
Author(s):  
Ignacio Juan Ramírez Rosado ◽  
Enrique Zorzano Alba

This paper presents a multiobjective optimization method, using an enumerative procedure for determining the optimal number and the optimal locations of sectionalizing switches and protective devices, in order to achieve the best ENS (Energy Not Supplied) reliability index with minimal investment cost in distribution network systems with several substations (STR). To achieve this, two objective functions are optimized: one defined by an ENS reliability index and the other defined by the economic investment costs. From all the achieved solutions, the non-dominated solutions are selected, which represent the best results for each economic investment. Thus, the planner can utilize a support tool for decision-making regarding investment and installation of sectionalizing switches and protective devices, taking into account the technical and economic limitations imposed by the electric utility.


The power loss in the radial distribution network is appreciable as compared to transmission network. To reduce the power loss in distribution network which is radial in nature, the solution methodology adopted in this paper is optimal placement of distributed generators (DG). The optimization incorporated is Multi-objective Grey Wolf Optimization (MOGWO). The optimization is accomplished for three different cases. In each case two objective functions are simultaneously optimized to obtain non-dominated solutions using Multi-objective Grey Wolf Optimization. Case (1): To minimize the real power loss and maximize the savings obtained due to DG installation. Case (2): To minimize real power loss and maximum voltage deviation in the network. Case (3): To minimize real power loss and rating of DG installed. MOGWO method maintains an archive which contains pareto-optimal solutions. The archive mimics the behaviour of grey wolves. MOGWO method is verified on radial distribution networks. The effectiveness of the optimization method is proven by comparing the results with other optimization methods available in the literature.


Author(s):  
Swathisriranjani M ◽  
Mohananthini K ◽  
Ranjitha M ◽  
Baskar S ◽  
Kavitha D

<p>In this paper, a problem of allocation and sizing of multiple active power-line conditioners (aplcs) in power systems is handled with novel formulation. The utilized objective function comprises two main factors such as reduction of total harmonic distortion and the total cost of active power-line conditioners (aplcs). The formulated problem is solved by optimization technique SHUFFLE FROG LEAP ALGORITHM(SHFLA) using MATLAB. To evaluate the competence of the proposed formulation, the IEEE 18-bus  distorted distribution test system is employed and investigated with various number of aplcs placement. These cases are based on the discrete and limited size for aplcs, requiring the optimization method to solve the constrained and discrete nonlinear problems. The comparison of results in this paper showed that the proposed SHFLA is the most effective result among others in determining optimum location and size of APLC in distribution systems.</p>


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-28
Author(s):  
Tri Phuoc Nguyen ◽  
Tuan Trong Nguyen ◽  
Trung Hieu Quang ◽  
Dieu Ngoc Vo ◽  
Mohammad Hassan Khooban

This paper proposes a novel hybrid algorithm based on a combination of the simple quadratic interpolation and the symbiosis organisms search algorithm (SQI-SOS) for finding the optimal location and size of capacitors in radial distribution networks. The objective of the problem is to minimize the system operating cost so that the net yearly savings of the system are increased. The effectiveness of the SQI-SOS has been tested on 33-, 69-, and 119-bus radial distribution networks with different load models. The obtained results from the test system by the proposed SQI-SOS are compared with those from the conventional SOS and other mature optimization methods in the literature. The result comparison has shown that the proposed SQI-SOS algorithm can provide a better solution than the other methods. Accordingly, the proposed SQI-SOS can be a very effective and efficient method for dealing with the optimal capacitor placement problem in distribution networks.


Electronics ◽  
2021 ◽  
Vol 10 (24) ◽  
pp. 3182
Author(s):  
Afroz Alam ◽  
Mohd Tariq ◽  
Mohammad Zaid ◽  
Preeti Verma ◽  
Marwan Alsultan ◽  
...  

There is a need for the optimal positioning of protective devices to maximize customers satisfaction per their demands. Such arrangement advances the distribution system reliability to maximum achievable. Thus, radial distribution system (RDS) reliability can be improved by placing reclosers at suitable feeder sections. This article presents comprehensive details of an attempt to determine the reclosers’ optimal location in an RDS to maximize the utility profit by reliability improvement. Assessment of different reliability indices such as SAIDI, SAIFI, CAIFI, CAIDI, etc., with recloser placement, exhibits a considerable improvement in these indices in contrast with the absence of recloser. Consequently, a new bidirectional formulation has been proposed for the optimized arrangement of reclosers’. This formulation efficiently handles the bidirectional power flow, resulting from distributed generation (DG) unit (s) in the system. The proposed model has been solved for a test system by utilizing the Genetic algorithm (GA) optimization method. Later, test results conclude that reclosers’ optimal placement contributes significantly towards utility profit with minimum investment and outage costs.


Sign in / Sign up

Export Citation Format

Share Document