scholarly journals Linear Active Disturbance Rejection Control for DC Bus Voltage of Permanent Magnet Synchronous Generator Based on Total Disturbance Differential

Energies ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3906 ◽  
Author(s):  
Xuesong Zhou ◽  
Mao Liu ◽  
Youjie Ma ◽  
Bao Yang ◽  
Faqing Zhao

The wind power grid-connected inverter system has nonlinear, strong coupling, and is susceptible to grid voltage fluctuations and nonlinear load effects. To achieve satisfactory control results, the voltage outer loop is controlled by an improved linear active disturbance rejection control (LADRC). LADRC has strong adaptability, robustness and operability. It can automatically detect and compensate for internal and external disturbances, and correct complex controlled objects to integrator series. The total perturbation differential signal is introduced in the traditional linear extended state observer (LESO), which improves the dynamic perturbation observation ability of LESO. The frequency response characteristics analysis shows that the new LADRC has better anti-interference performance. The effectiveness of the improved controller under multiple operating conditions is verified by simulation.

Energies ◽  
2019 ◽  
Vol 12 (15) ◽  
pp. 3024 ◽  
Author(s):  
Yaya Zhang ◽  
Jianzhong Zhu ◽  
Xueyu Dong ◽  
Pinchao Zhao ◽  
Peng Ge ◽  
...  

The power quality of new energy resources has received tremendous attention recently. The control approach for the inverter, an interface between the new energy resources, and the infinite bus system is of vital importance. For the virtual synchronous generator (VSG), one of the research hotspots in the inverter control field, there are some challenges remaining to be dealt with. First is the contradiction between the rapid response and overshoot of active power output if VSG is connected to the grid. Secondly, the active power is deeply influenced by the fluctuation of gird frequency and this may bring power oscillation to VSG in weak grids. In this article, an active power controller for power tracking of grid-connected VSG is designed based on linear active disturbance rejection control (LADRC) by compensating for the lumped disturbance in a feedforward fashion. The parameters of the controller are analyzed and tuned in the frequency domain to acquire a desirable control performance. Moreover, the robustness of the control system is also considered. Simulation results show that the designed control system can transmit active power to the grid in a timely manner with no overshoot, as demanded. Additionally, it can output active power steadily according to the power reference without using a phase-locked loop (PLL) when the grid frequency has different features of fluctuation. In addition, the simulation results demonstrate that the improved VSG has strong robustness to the model parameter perturbation and mismatch.


Energies ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3790 ◽  
Author(s):  
Xuesong Zhou ◽  
Jiayao Wang ◽  
Youjie Ma

Photovoltaic grid-connected power generation systems are easily affected by external factors, and their anti-interference performance is poor. For example, changes in illumination and fluctuations in the power grid affect the operation ability of the system. Linear active disturbance rejection control (LADRC) can extract the “summation disturbance” information from the system and eliminate the disturbance at the fastest speed by controlling the signal before it affects the final output of the system. In this paper, an improved linear ADRC based on the principle of deviation control is proposed, and the voltage outer loop is controlled by an improved LADRC. This improved LADRC takes the deviation between each state variable and its observed value as the regulation basis for each state variable of the linear extended state observer (LESO). Based on the analysis of the bode diagram in the frequency domain, it can be concluded that, compared with the unimproved LADRC, the new LADRC has better disturbance rejection performance. The simulation results show that the control performance of the new, improved LADRC is better than that of the unimproved LADRC under different operating conditions, and it has better stability performance and anti-disturbance performance.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Rongjie Wang ◽  
Xiangyu Liu ◽  
Yuyuan Huang

To solve synchronous generator oscillations in marine power systems which cannot be effectively suppressed, according to the nonlinearity and time variability of the ship power system, a method of synchronous generator excitation control for a ship based on active disturbance rejection control (ADRC) is proposed. Under different working conditions, three methods are automatic voltage regulator (AVR), automatic voltage regulator with power system stabilizer (PSS), and ADRC methods, which are applied to the two-generator parallel-running excitation system of a ship in simulations. The simulation results show that the excitation control system based on ADRC is faster and has better anti-interference ability and has a better restraining effect on synchronous generator oscillation.


Sign in / Sign up

Export Citation Format

Share Document