scholarly journals Fault Ride-Through Power Electronic Topologies for Hybrid Energy Storage Systems

Energies ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 257 ◽  
Author(s):  
Ramy Georgious ◽  
Jorge Garcia ◽  
Mark Sumner ◽  
Sarah Saeed ◽  
Pablo Garcia

This work presents a fault ride-through control scheme for a non-isolated power topology used in a hybrid energy storage system designed for DC microgrids. The hybrid system is formed by a lithium-ion battery bank and a supercapacitor module, both coordinated to achieve a high-energy and high-power combined storage system. This hybrid system is connected to a DC bus that manages the power flow of the microgrid. The power topology under consideration is based on the buck-boost bidirectional converter, and it is controlled through a bespoke modulation scheme to obtain low losses at nominal operation. The operation of the proposed control scheme during a DC bus short-circuit failure is shown, as well as a modification to the standard control to achieve fault ride-through capability once the fault is over. The proposed control provides a protection to the energy storage systems and the converter itself during the DC bus short-circuit fault. The operation of the converter is developed theoretically, and it has been verified through both simulations and experimental validation on a built prototype.

Electronics ◽  
2021 ◽  
Vol 10 (15) ◽  
pp. 1801
Author(s):  
Chenyun Pan ◽  
Shengyu Tao ◽  
Hongtao Fan ◽  
Mengyao Shu ◽  
Yong Zhang ◽  
...  

Optimal operation of energy storage systems plays an important role in enhancing their lifetime and efficiency. This paper combines the concepts of the cyber–physical system (CPS) and multi-objective optimization into the control structure of the hybrid energy storage system (HESS). Owing to the time-varying characteristics of HESS, combining real-time data with physical models via CPS can significantly promote the performance of HESS. The multi-objective optimization model designed in this paper can improve the utilization of supercapacitors, reduce energy consumption, and prevent the state of charge (SOC) of HESS from exceeding the limitation. The new control scheme takes the characteristics of the components of HESS into account and is beneficial in reducing battery short-term power cycling and high discharge currents. The rain-flow counting algorithm is applied for battery life prediction to quantify the benefits of the HESS under the control scheme proposed. A much better power-sharing relationship between the supercapacitor and the lithium–ion battery (LiB) can be observed from the SIMULINK results and the case study with our new control scheme. Moreover, compared to the traditional low-pass filter control method, the battery lifetime is quantifiably increased from 3.51 years to 10.20 years while the energy efficiency is improved by 1.56%.


Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2854 ◽  
Author(s):  
Danijel Pavković ◽  
Mihael Cipek ◽  
Zdenko Kljaić ◽  
Tomislav Mlinarić ◽  
Mario Hrgetić ◽  
...  

This contribution outlines the design of electric vehicle direct-current (DC) bus control system supplied by a battery/ultracapacitor hybrid energy storage system, and its coordination with the fully electrified vehicle driveline control system. The control strategy features an upper-level DC bus voltage feedback controller and a direct load compensator for stiff tracking of variable (speed-dependent) voltage target. The inner control level, comprising dedicated battery and ultracapacitor current controllers, is commanded by an intermediate-level control scheme which dynamically distributes the upper-level current command between the ultracapacitor and the battery energy storage systems. The feedback control system is designed and analytical expressions for feedback controller parameters are obtained by using the damping optimum criterion. The proposed methodology is verified by means of simulations and experimentally for different realistic operating regimes, including electric vehicle DC bus load step change, hybrid energy storage system charging/discharging, and electric vehicle driveline subject to New European Driving Cycle (NEDC), Urban Driving Dynamometer Schedule (UDDS), New York Certification Cycle (NYCC) and California Unified Cycle (LA92), as well as for abrupt acceleration/deceleration regimes.


Energies ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 3498 ◽  
Author(s):  
Tiezhou Wu ◽  
Wenshan Yu ◽  
Lujun Wang ◽  
Linxin Guo ◽  
Zhiquan Tang

Traditional hierarchical control of the microgrid does not consider the energy storage status of a distributed hybrid energy storage system. This leads to the inconsistency of the remaining capacity of the energy storage system in the process of system operation, which is not conducive to the safe and stable operation of the system. In this paper, an improved hierarchical control strategy is proposed: the first allocation layer completes the allocation between the distribution energy storage systems considering the state of hybrid energy storage systems, and the second allocation layer realizes the allocation within the hybrid energy storage systems based on variable time constant low-pass filtering. Considering the extreme conditions of energy storage systems, the transfer current is introduced in the second allocation process. The SOC (stage of charge) of the supercapacitor is between 40% and 60%, which ensures that the supercapacitor has enough margin to respond to the power demand. An example of a 300 MW photovoltaic microgrid system in a certain area is analyzed. Compared with the traditional hierarchical control, the proposed control strategy can reduce the SOC change of a hybrid energy storage system by 9% under the same conditions, and make the supercapacitor active after power stabilization, which is helpful to the stable operation of the microgrid.


Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 600
Author(s):  
Kevin Mallon ◽  
Francis Assadian

Hybrid and electric vehicle batteries deteriorate from use due to irreversible internal chemical and mechanical changes, resulting in decreased capacity and efficiency of the energy storage system. This article investigates the modeling and control of a lithium-ion battery and ultracapacitor hybrid energy storage system for an electric vehicle for improved battery lifespan and energy consumption. By developing a control-oriented aging model for the energy storage components and integrating the aging models into an energy management system, the trade-off between battery degradation and energy consumption can be minimized. This article produces an optimal aging-aware energy management strategy that controls both battery and ultracapacitor aging and compares these results to strategies that control only battery aging, strategies that control battery aging factors but not aging itself, and non-optimal benchmark strategies. A case study on an electric bus with variously-sized hybrid energy storage systems shows that a strategy designed to control battery aging, ultracapacitor aging, and energy losses simultaneously can achieve a 28.2% increase to battery lifespan while requiring only a 7.0% decrease in fuel economy.


2021 ◽  
Author(s):  
Gouri Rani Barai

Efficient supply of electric energy, maintaining power quality, and addressing intermittency of renewable energy and unpredictable demand fluctuations are challenges of a modern power grid. An individual energy storage technology seldom provides all the desired characteristics expected. A Hybrid Energy Storage System (HESS) including different types of energy storage systems can address these challenges. In this work a new formulation and algorithm was developed that optimally designs a grid-scale HESS for desired performances such as peak load shaving and power demand curve smoothening at the least capital cost. The proposed HESS comprised of a combination of Lithium Ion batteries, Flywheels, and Ultracapacitor based Energy Storage Systems. Real and synthetic power demand dataset representing different types of demand fluctuations were used in the analysis. The proposed formulation and algorithm was able to optimally size HESS such that it costs the least while performing in the desired manner.


Author(s):  
Cary E. Laird ◽  
Andrew G. Alleyne

Abstract The practice of hybridizing energy storage systems is vital to high ramp rate power applications, in which energy storage systems are constrained by strict power and energy requirements. Hybrid energy storage is typically studied in the electrical and thermal domains separately, but due to the inherent link between electrical and thermal energy domains, it is necessary to examine hybrid energy storage in both domains simultaneously. In this paper, a combined electro-thermal energy storage system is modeled and simulated. Equivalent circuit and lumped-parameter models are used to facilitate control design. PI controllers are designed for both the electrical and thermal domains to demonstrate the ability to perform multi-domain energy management.


Sign in / Sign up

Export Citation Format

Share Document