scholarly journals Flywheel Energy Storage and Dump Load to Control the Active Power Excess in a Wind Diesel Power System

Energies ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 2029 ◽  
Author(s):  
Rafael Sebastián ◽  
Rafael Peña-Alzola

Wind Diesel Power Systems (WDPS) are isolated microgrids which combine Wind Turbine Generators (WTGs) with Diesel Generators (DGs). The WDPS modelled in this article is composed of a DG, a WTG, consumer load, Dump Load (DL) and a Flywheel Energy Storage System (FESS). In the Wind-Diesel (WD) mode both the DG and WTG supply power to the consumers. The WDPS is simulated in the WD mode in the case that the WTG produced power exceeds the load consumption. This WTG excess power case is simulated in the subcases of DL and FESS turned off, only-DL and only-FESS. Simulations for the DL and FESS-off case show that the WTG excess power leads to a continuous system frequency increase, so that the tripping of the WTG Circuit Breaker (CB) is required to guarantee the WDPS power supply continuity. Simulations for the only-DL/only-FESS cases show that commanding the DL/FESS to consume controlled power, so that the required DG power to balance the system active power is positive, enables the DE speed governor to regulate the system frequency. Furthermore, the frequency and voltage variations in the DL/FESS cases are moderate and there is no need to trip the WTG-CB, so that the WDPS reliability and power quality are greatly improved. Additionally, the only-FESS case obtains better WDPS relative stability than the only-DL case.

2013 ◽  
Vol 448-453 ◽  
pp. 2903-2907
Author(s):  
You Ran Lv ◽  
Lei Wang ◽  
Jia Yi Xiang ◽  
Feng Yang ◽  
Xiao Qiang Du

The flywheel energy storage technology is a kind of method that converts electrical energy into kinetic energy in store. The flywheel energy storage system (FESS) is usually used for renewable energy system such as wind turbine generator system (WTGS) to adjust the quality of output power. Droop control is a kind of control technology to regulate the active power and reactive power in micro-grid. In this paper, we introduced a method to combine the droop control with FESS and designed the control topology. The droop control method was applied to control the part of inverter in FESS. By controlling the output frequency and the voltage amplitude of WTGS-FESS system, we can regulate the output of the inverter as a promotion in smoother active power and reactive power.


Author(s):  
Gaber Magdy ◽  
Abualkasim Bakeer ◽  
Mohammed Alhasheem

AbstractWith high penetration of renewable energy sources (RESs) in modern power systems, system frequency becomes more prone to fluctuation as RESs do not naturally have inertial properties. A conventional energy storage system (ESS) based on a battery has been used to tackle the shortage in system inertia but has low and short-term power support during the disturbance. To address the issues, this paper proposes a new synthetic inertia control (SIC) design with a superconducting magnetic energy storage (SMES) system to mimic the necessary inertia power and damping properties in a short time and thereby regulate the microgrid (µG) frequency during disturbances. In addition, system frequency deviation is reduced by employing the proportional-integral (PI) controller with the proposed SIC system. The efficacy of the proposed SIC system is validated by comparison with the conventional ESS and SMES systems without using the PI controller, under various load/renewable perturbations, nonlinearities, and uncertainties. The simulation results highlight that the proposed system with SMES can efficiently manage several disturbances and high system uncertainty compared to the conventional ESS and SMES systems, without using the PI controller.


Sign in / Sign up

Export Citation Format

Share Document